Publications by authors named "Hildebrand S"

Thermogenic brown adipose tissue (BAT) has emerged as an attractive target for combating obesity. However, pharmacological activation of energy expenditure by BAT and/or induction of browning of white adipose tissue (WAT) has been hampered by cardiovascular side effects. To address these concerns, we developed polylactide-co-glycolide acid (PLGA) microspheres loaded with mirabegron (MIR), a selective beta-3 adrenergic receptor (ADRB3) agonist, to achieve sustained local induction and activation of thermogenic adipocytes.

View Article and Find Full Text PDF

Therapeutic small interfering RNA (siRNA) requires sugar and backbone modifications to inhibit nuclease degradation. However, metabolic stabilization by phosphorothioate (PS), the only backbone chemistry used clinically, may be insufficient for targeting extrahepatic tissues. To improve oligonucleotide stabilization, we report the discovery, synthesis and characterization of extended nucleic acid (exNA) consisting of a methylene insertion between the 5'-C and 5'-OH of a nucleoside.

View Article and Find Full Text PDF

Small interfering RNAs (siRNAs) are revolutionizing the treatment of liver-associated indications. Yet, robust delivery to extrahepatic tissues remains a challenge. Conjugating lipids (e.

View Article and Find Full Text PDF

Purpose: The services defined as complementary and alternative medicine/healthcare (CAM) are used to varying degrees according to the nature of the health problem, and musculoskeletal disorders, in particular, often lead to the use of CAM. Chronic pain is often cited as a reason for using CAM, and it is also the cardinal symptom of patients with back pain referred for specialist care. However, previous studies do not consider the heterogeneity of back pain when examining the use of CAM.

View Article and Find Full Text PDF

Datasets consist of measurement data and metadata. Metadata provides context, essential for understanding and (re-)using data. Various metadata standards exist for different methods, systems and contexts.

View Article and Find Full Text PDF

Divalent short-interfering RNA (siRNA) holds promise as a therapeutic approach allowing for the sequence-specific modulation of a target gene within the central nervous system (CNS). However, an siRNA modality capable of simultaneously modulating gene pairs would be invaluable for treating complex neurodegenerative disorders, where more than one pathway contributes to pathogenesis. Currently, the parameters and scaffold considerations for multi-targeting nucleic acid modalities in the CNS are undefined.

View Article and Find Full Text PDF

Regulated exocytosis is initiated by increased Ca2+ concentrations in close spatial proximity to secretory granules, which is effectively prevented when the cell is at rest. Here we showed that exocytosis of zymogen granules in acinar cells was driven by Ca2+ directly released from acidic Ca2+ stores including secretory granules through NAADP-activated two-pore channels (TPCs). We identified OCaR1 (encoded by Tmem63a) as an organellar Ca2+ regulator protein integral to the membrane of secretory granules that controlled Ca2+ release via inhibition of TPC1 and TPC2 currents.

View Article and Find Full Text PDF

In 2015, we launched the mesoSPIM initiative, an open-source project for making light-sheet microscopy of large cleared tissues more accessible. Meanwhile, the demand for imaging larger samples at higher speed and resolution has increased, requiring major improvements in the capabilities of such microscopes. Here, we introduce the next-generation mesoSPIM ("Benchtop") with a significantly increased field of view, improved resolution, higher throughput, more affordable cost, and simpler assembly compared to the original version.

View Article and Find Full Text PDF

We used -ethyl--nitrosurea-induced germline mutagenesis combined with automated meiotic mapping to identify specific systolic blood pressure (SBP) and heart rate (HR) determinant loci. We analyzed 43,627 third-generation (G3) mice from 841 pedigrees to assess the effects of 45,378 variant alleles within 15,760 genes, in both heterozygous and homozygous states. We comprehensively tested 23% of all protein-encoding autosomal genes and found 87 SBP and 144 HR (with 7 affecting both) candidates exhibiting detectable hypomorphic characteristics.

View Article and Find Full Text PDF

Introduction: The most significant genetic risk factor for late-onset Alzheimer's disease (AD) is APOE4, with evidence for gain- and loss-of-function mechanisms. A clinical need remains for therapeutically relevant tools that potently modulate APOE expression.

Methods: We optimized small interfering RNAs (di-siRNA, GalNAc) to potently silence brain or liver Apoe and evaluated the impact of each pool of Apoe on pathology.

View Article and Find Full Text PDF

Brown adipose tissue (BAT) is a central thermogenic organ that enhances energy expenditure and cardiometabolic health. However, regulators that specifically increase the number of thermogenic adipocytes are still an unmet need. Here, we show that the cAMP-binding protein EPAC1 is a central regulator of adaptive BAT growth.

View Article and Find Full Text PDF

Di-valent short interfering RNA (siRNA) is a promising therapeutic modality that enables sequence-specific modulation of a single target gene in the central nervous system (CNS). To treat complex neurodegenerative disorders, where pathogenesis is driven by multiple genes or pathways, di-valent siRNA must be able to silence multiple target genes simultaneously. Here we present a framework for designing unimolecular "dual-targeting" di-valent siRNAs capable of co-silencing two genes in the CNS.

View Article and Find Full Text PDF

In 2015, we launched the mesoSPIM initiative (www.mesospim.org), an open-source project for making light-sheet microscopy of large cleared tissues more accessible.

View Article and Find Full Text PDF

The production of a majority of chemicals involves heterogeneous catalysis at some stage, and the rates of many heterogeneously catalyzed processes are governed by transition states for dissociative chemisorption on metals. Accurate values of barrier heights for dissociative chemisorption on metals are therefore important to benchmarking electronic structure theory in general and density functionals in particular. Such accurate barriers can be obtained using the semiempirical specific reaction parameter (SRP) approach to density functional theory.

View Article and Find Full Text PDF

Inhibition of Janus kinase (JAK) family enzymes is a popular strategy for treating inflammatory and autoimmune skin diseases. In the clinic, small molecule JAK inhibitors show distinct efficacy and safety profiles, likely reflecting variable selectivity for JAK subtypes. Absolute JAK subtype selectivity has not yet been achieved.

View Article and Find Full Text PDF

Modern wheat (Triticum aestivum L.) cultivars have a free-threshing habit, which allows for easy manual or mechanical threshing. However, when harvesting is delayed or extreme weather events occur at harvest time, grain shattering can cause severe loss of harvestable yield.

View Article and Find Full Text PDF

Metabolic stabilization of therapeutic oligonucleotides requires both sugar and backbone modifications, where phosphorothioate (PS) is the only backbone chemistry used in the clinic. Here, we describe the discovery, synthesis, and characterization of a novel biologically compatible backbone, extended nucleic acid (exNA). Upon exNA precursor scale up, exNA incorporation is fully compatible with common nucleic acid synthetic protocols.

View Article and Find Full Text PDF

Metabolic stabilization of therapeutic oligonucleotides requires both sugar and backbone modifications, where phosphorothioate (PS) is the only backbone chemistry used in the clinic. Here, we describe the discovery, synthesis, and characterization of a novel biologically compatible backbone, extended nucleic acid (exNA). Upon exNA precursor scale up, exNA incorporation is fully compatible with common nucleic acid synthetic protocols.

View Article and Find Full Text PDF

Preadenylated single-stranded DNA ligation adaptors are essential reagents in many next generation RNA sequencing library preparation protocols. These oligonucleotides can be adenylated enzymatically or chemically. Enzymatic adenylation reactions have high yield but are not amendable to scale up.

View Article and Find Full Text PDF

Imaging large, cleared samples requires microscope objectives that combine a large field of view (FOV) with a long working distance (WD) and a high numerical aperture (NA). Ideally, such objectives should be compatible with a wide range of immersion media, which is challenging to achieve with conventional lens-based objective designs. Here we introduce the multi-immersion 'Schmidt objective' consisting of a spherical mirror and an aspherical correction plate as a solution to this problem.

View Article and Find Full Text PDF

The continuous evolution of SARS-CoV-2 variants complicates efforts to combat the ongoing pandemic, underscoring the need for a dynamic platform for the rapid development of pan-viral variant therapeutics. Oligonucleotide therapeutics are enhancing the treatment of numerous diseases with unprecedented potency, duration of effect, and safety. Through the systematic screening of hundreds of oligonucleotide sequences, we identified fully chemically stabilized siRNAs and ASOs that target regions of the SARS-CoV-2 genome conserved in all variants of concern, including delta and omicron.

View Article and Find Full Text PDF

The ability to image human tissue samples in 3D, with both cellular resolution and a large field of view (FOV), can improve fundamental and clinical investigations. Here, we demonstrate the feasibility of light-sheet imaging of ~5 cm sized formalin fixed human brain and up to ~7 cm sized formalin fixed paraffin embedded (FFPE) prostate cancer samples, processed with the FFPE-MASH protocol. We present a light-sheet microscopy prototype, the cleared-tissue dual view Selective Plane Illumination Microscope (ct-dSPIM), capable of fast 3D high-resolution acquisitions of cm scale cleared tissue.

View Article and Find Full Text PDF

(1) Background: The recurrence of glioblastoma multiforme (GBM) is mainly due to invasion of the surrounding brain tissue, where organic solutes, including glucose and inositol, are abundant. Invasive cell migration has been linked to the aberrant expression of transmembrane solute-linked carriers (SLC). Here, we explore the role of glucose (SLC5A1) and inositol transporters (SLC5A3) in GBM cell migration.

View Article and Find Full Text PDF

Using random germline mutagenesis in mice, we identified a viable hypomorphic allele (boh) of the transcription-factor-encoding gene Ovol2 that resulted in obesity, which initially developed with normal food intake and physical activity but decreased energy expenditure. Fat weight was dramatically increased, while lean weight was reduced in 12-week-old boh homozygous mice, culminating by 24 weeks in massive obesity, hepatosteatosis, insulin resistance, and diabetes. The Ovol2 genotype augmented obesity in Lep mice, and pair-feeding failed to normalize obesity in Ovol2 mice.

View Article and Find Full Text PDF