Publications by authors named "Hilde Azijn"

Connection domain mutations (CDMs) in HIV-1 reverse transcriptase (RT) alter susceptibility to some nucleoside/nonnucleoside RT inhibitors (NRTIs/NNRTIs). Their effects on susceptibility and virologic responses to etravirine were analyzed. Seventeen CDMs were evaluated: L283I, E312Q, G333D, G333E, G335C, G335D, N348I, A360I, A360T, A360V, V365I, T369I, A371V, A376S, I393L, E399D, and E399G.

View Article and Find Full Text PDF

The randomized, placebo-controlled Phase III DUET studies enrolled treatment-experienced, HIV-1-infected patients. We examined the genotypic and phenotypic changes at endpoint relative to baseline, including the emergence of individual reverse transcriptase (RT) mutations, in patients who received the non-nucleoside reverse transcriptase inhibitor (NNRTI) etravirine and experienced virologic failure by rebound by the time of the Week 96 analysis. Patients received etravirine 200 mg twice-daily in combination with a background regimen containing darunavir/ritonavir, investigator-selected nucleoside reverse transcriptase inhibitors, and optional enfuvirtide.

View Article and Find Full Text PDF

Etravirine (ETR) has previously shown potent in vitro activity against different primary HIV-1 isolates and demonstrated durable efficacy in treatment-experienced, HIV-1-infected patients in the Phase III DUET studies. The antiviral activity and efficacy of ETR against HIV-1 subtypes B and non-B were further investigated. The effect of HIV-1 subtype on ETR fold change in EC(50) value (FC) was analyzed in HIV-1 recombinant clinical isolates from 673 treatment-naive patients enrolled in other Tibotec studies.

View Article and Find Full Text PDF

Etravirine is a recently approved nonnucleoside reverse transcriptase inhibitor. The ability of etravirine to limit the emergence of resistance to protease inhibitors, and specifically to darunavir, was investigated in the subset of treatment-experienced patients with virologic rebound in the phase III DUET trials. Of those experiencing rebound, fewer etravirine-treated than placebo-treated patients developed mutations associated with resistance to protease inhibitors in general and to darunavir in particular, and more patients in the etravirine than the placebo-group maintained baseline darunavir susceptibility at endpoint.

View Article and Find Full Text PDF

Objective: To refine the genotypic and phenotypic correlates of response to the nonnucleoside reverse transcriptase inhibitor etravirine.

Design: Initial analyses identified 13 etravirine resistance-associated mutations (RAMs) and clinical cutoffs (CCOs) for etravirine. A multivariate analysis was performed to refine the initial etravirine RAM list and improve the predictive value of genotypic resistance testing with regard to virologic response and relationship to phenotypic data.

View Article and Find Full Text PDF

Nonnucleoside reverse transcriptase inhibitors (NNRTIs) have proven efficacy against human immunodeficiency virus type 1 (HIV-1). However, in the setting of incomplete viral suppression, efavirenz and nevirapine select for resistant viruses. The diarylpyrimidine etravirine has demonstrated durable efficacy for patients infected with NNRTI-resistant HIV-1.

View Article and Find Full Text PDF

Background: Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are an important component of antiretroviral therapy for HIV type-1 (HIV-1)-infected patients. Development of NNRTI resistance can lead to treatment failure and is conferred by the presence of specific resistance-associated mutations (RAMs) in the reverse transcriptase. In addition to the widely used list of NNRTI RAMs provided by the International AIDS Society-USA HIV-1 Drug Resistance Mutation Group, which were identified on the basis of clinical experience with the approved NNRTIs, a more comprehensive list of NNRTI RAMs is needed to guide the study of baseline and emerging resistance to new NNRTIs.

View Article and Find Full Text PDF

TMC125 is a potent new investigational nonnucleoside reverse transcriptase inhibitor (NNRTI) that is active against human immunodeficiency virus type 1 (HIV-1) with resistance to currently licensed NNRTIs. Sequential passage experiments with both wild-type virus and NNRTI-resistant virus were performed to identify mutations selected by TMC125 in vitro. In addition to "classic" selection experiments at a low multiplicity of infection (MOI) with increasing concentrations of inhibitors, experiments at a high MOI with fixed concentrations of inhibitors were performed to ensure a standardized comparison between TMC125 and current NNRTIs.

View Article and Find Full Text PDF

The purpose of this study was to characterize the antiviral activity, cytotoxicity, and mechanism of action of TMC114, a novel human immunodeficiency virus type 1 (HIV-1) protease inhibitor (PI). TMC114 exhibited potent anti-HIV activity with a 50% effective concentration (EC50) of 1 to 5 nM and a 90% effective concentration of 2.7 to 13 nM.

View Article and Find Full Text PDF

On the basis of structural data gathered during our ongoing HIV-1 protease inhibitors program, from which our clinical candidate TMC114 9 was selected, we have discovered new series of fused heteroaromatic sulfonamides. The further extension into the P2' region was aimed at identifying new classes of compounds with an improved broad spectrum activity and acceptable pharmacokinetic properties. Several of these compounds display an exceptional broad spectrum activity against a panel of highly cross-resistant mutants.

View Article and Find Full Text PDF

A series of novel pyrazinones designed as non-nucleoside reverse transcriptase inhibitors (NNRTIs) was synthesized and their anti-HIV structure-activity relationship (SAR) was studied.

View Article and Find Full Text PDF

The screening of known HIV-1 protease inhibitors against a panel of multi-drug-resistant viruses revealed the potent activity of TMC126 on drug-resistant mutants. In comparison to amprenavir, the improved affinity of TMC126 is largely the result of one extra hydrogen bond to the backbone of the protein in the P2 pocket. Modification of the substitution pattern on the phenylsulfonamide P2' substituent of TMC126 created an interesting SAR, with the close analogue TMC114 being found to have a similar antiviral activity against the mutant and the wild-type viruses.

View Article and Find Full Text PDF

Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are potent inhibitors of human immunodeficiency virus type 1 (HIV-1); however, currently marketed NNRTIs rapidly select resistant virus, and cross-resistance within the class is extensive. A parallel screening strategy was applied to test candidates from a series of diarylpyrimidines against wild-type and resistant HIV strains carrying clinically relevant mutations. Serum protein binding and metabolic stability were addressed early in the selection process.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session7b53umus2f7ue51gdv6duopo0oqptu7e): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once