Antimicrobial peptides are prominent components of the plant immune system acting against a wide variety of pathogens. Legume plants from the inverted repeat lacking clade (IRLC) have evolved a unique gene family encoding nodule-specific cysteine-rich NCR peptides acting in the symbiotic cells of root nodules, where they convert their bacterial endosymbionts into non-cultivable, polyploid nitrogen-fixing cells. NCRs are usually 30-50 amino acids long peptides having a characteristic pattern of 4 or 6 cysteines and highly divergent amino acid composition.
View Article and Find Full Text PDFThe increasing rate of fungal infections causes global problems not only in human healthcare but agriculture as well. To combat fungal pathogens limited numbers of antifungal agents are available therefore alternative drugs are needed. Antimicrobial peptides are potent candidates because of their broad activity spectrum and their diverse mode of actions.
View Article and Find Full Text PDFFront Microbiol
February 2020
In Rhizobium-legume symbiosis, the bacteria are converted into nitrogen-fixing bacteroids. In many legume species, differentiation of the endosymbiotic bacteria is irreversible, culminating in definitive loss of their cell division ability. This terminal differentiation is mediated by plant peptides produced in the symbiotic cells.
View Article and Find Full Text PDFImproving efficiency of oligonucleotide-directed mutagenesis (ODM) is a prerequisite for wide application of this gene-editing approach in plant science and breeding. Here we have tested histone deacetylase inhibitor treatments for induction of relaxed chromatin and for increasing the efficiency of ODM in cultured maize cells. For phenotypic assay we produced transgenic maize cell lines expressing the non-functional Green Fluorescent Protein (mGFP) gene carrying a TAG stop codon.
View Article and Find Full Text PDFEven in asymptomatic cases of Chlamydia trachomatis infection, the aim of the antibiotic strategy is eradication of the pathogen so as to avoid the severe late sequelae, such as pelvic inflammatory disease, ectopic pregnancy, and tubal infertility. Although first-line antimicrobial agents have been demonstrated to be predominantly successful in the treatment of C. trachomatis infection, treatment failures have been observed in some cases.
View Article and Find Full Text PDFLeguminous plants establish symbiosis with nitrogen-fixing alpha- and betaproteobacteria, collectively called rhizobia, which provide combined nitrogen to support plant growth. Members of the inverted repeat-lacking clade of legumes impose terminal differentiation on their endosymbiotic bacterium partners with the help of the nodule-specific cysteine-rich (NCR) peptide family composed of close to 600 members. Among the few tested NCR peptides, cationic ones had antirhizobial activity measured by reduction or elimination of the CFU and uptake of the membrane-impermeable dye propidium iodide.
View Article and Find Full Text PDFBackground: The CDC20 and Cdh1/CCS52 proteins are substrate determinants and activators of the Anaphase Promoting Complex/Cyclosome (APC/C) E3 ubiquitin ligase and as such they control the mitotic cell cycle by targeting the degradation of various cell cycle regulators. In yeasts and animals the main CDC20 function is the destruction of securin and mitotic cyclins. Plants have multiple CDC20 gene copies whose functions have not been explored yet.
View Article and Find Full Text PDFLegume plants host nitrogen-fixing endosymbiotic Rhizobium bacteria in root nodules. In Medicago truncatula, the bacteria undergo an irreversible (terminal) differentiation mediated by hitherto unidentified plant factors. We demonstrated that these factors are nodule-specific cysteine-rich (NCR) peptides that are targeted to the bacteria and enter the bacterial membrane and cytosol.
View Article and Find Full Text PDF