In recent decades, microplastics (MPs) have emerged as one of the biggest environmental challenges in aquatic environments. Ingestion and toxicity of MPs in seawater (SW) and freshwater (FW) fish have been studied extensively both in field and laboratory settings. However, the basic mechanism of how fish deal with MPs in SW and FW remains unclear, although physiological conditions of fish differ significantly in the two environments.
View Article and Find Full Text PDFAnterior and posterior paired appendages of vertebrates are notable examples of heterochrony in the relative timing of their development. In teleosts, posterior paired appendages (pelvic fin buds) emerge much later than their anterior paired appendages (pectoral fin buds). Pelvic fin buds of zebrafish () appear at 3 weeks post-fertilization (wpf) during the larva-to-juvenile transition (metamorphosis), whereas pectoral fin buds arise from the lateral plate mesoderm on the yolk surface at the embryonic stage.
View Article and Find Full Text PDFMicroplastic (MP) pollution is a major concern in aquatic environments. Many studies have detected MPs in fishes; however, little is known about differences of microplastic uptake by fish in freshwater (FW) and those in seawater (SW), although physiological conditions of fish differ significantly in the two media. In this study, we exposed larvae (21 days post-hatching) of Oryzias javanicus (euryhaline SW) and Oryzias latipes (euryhaline FW), to 1-µm polystyrene microspheres in SW and FW for 1, 3, or 7 days, after which, microscopic observation was conducted.
View Article and Find Full Text PDFIn zebrafish, pelvic fin buds appear at 3 weeks post fertilization (wpf) during the larval to juvenile transition (metamorphosis), but their fate is already determined during embryogenesis. Thus, presumptive pelvic fin cells appear to memorize their positional information for three weeks, but no factors expressed in the pelvic fin field from the embryonic to the metamorphic stages have been identified. In mice, Islet1 is proposed to promote nuclear accumulation of β-catenin in the hindlimb field, which leads to the initiation of hindlimb bud outgrowth through activation of the Wnt/βcatenin pathway.
View Article and Find Full Text PDF