Publications by authors named "Hilary Mackay"

Orthogonally positioned diamino/dicationic polyamides (PAs) have good water solubility and enhanced binding affinity, whilst retaining DNA minor groove and sequence specificity compared to their monoamino/monocationic counterparts. The synthesis and DNA binding properties of the following diamino PAs: f-IPI (3a), f-IPP (4), f-PIP (5), and f-PPP (6) are described. P denotes the site where a 1-propylamino group is attached to the N1-position of the heterocycle.

View Article and Find Full Text PDF

With the aim of incorporating a recognition element that acts as a fluorescent probe upon binding to DNA, three novel pyrrole (P) and imidazole (I)-containing polyamides were synthesized. The compounds contain a p-anisylbenzimidazolecarboxamido (Hx) moiety attached to a PP, IP, or PI unit, giving compounds HxPP (2), HxIP (3), and HxPI (4), respectively. These fluorescent hybrids were tested against their complementary nonfluorescent, non-formamido tetraamide counterparts, namely, PPPP (5), PPIP (6), and PPPI (7) (cognate sequences 5'-AAATTT-3', 5'-ATCGAT-3', and 5'-ACATGT-3', respectively).

View Article and Find Full Text PDF

An orthogonally positioned diamino/dicationic polyamide f-IPI 2 was synthesized. It has enhanced binding affinity, and it showed comparable sequence specificity to its monoamino/monocationic counterpart f-IPI 1. Results from CD and DNase I footprinting studies confirmed the minor groove binding and selectivity of polyamides 1 and 2 for the cognate sequence 5'-ACGCGT-3'.

View Article and Find Full Text PDF

N-Methyl imidazole (Im) and N-methyl pyrrole (Py)-containing polyamides that can form stacked dimers can be programmed to target specific DNA sequences in the minor groove of DNA and control gene expression. Polyamides are being investigated as potential medicinal agents for treating diseases including cancer. The naturally occurring polyamide distamycin binds as a dimer in the minor groove of DNA and recognizes sequences rich in A/T and T/A base pairs indiscriminately.

View Article and Find Full Text PDF

The synthesis, DNA binding characteristics and biological activity of an N-formamido pyrrole- and imidazole-containing H-pin polyamide (f-PIP H-pin, 2) designed to selectively target the ICB2 site on the topoIIalpha promoter, is reported herein. Thermal denaturation, circular dichroism, isothermal titration calorimetry, surface plasmon resonance and DNase I footprinting studies demonstrated that 2 maintained the selectivity of the unlinked parent monomer f-PIP (1) and with a slight enhancement in binding affinity (K(eq)=5 x 10(5)M(-1)) to the cognate site (5'-TACGAT-3'). H-pin 2 also exhibited comparable ability to inhibit NF-Y binding to 1, as demonstrated by gel shift studies.

View Article and Find Full Text PDF

A total of 24 novel 2,5-diaryl-1,3,4-oxadiazoline analogs of combretastatin A-4 (CA-4, 1) were designed, synthesized, and evaluated for biological activities. The compounds represent two structural classes; the Type I class has three methoxy groups on the A ring and the Type II class has a single methoxy group on the A ring. Biological evaluations demonstrate that multiple structural features control the biological potency.

View Article and Find Full Text PDF

Imidazole and pyrrole-containing polyamides belong to an important class of compounds that can be designed to target specific DNA sequences, and they are potentially useful in applications of controlling gene expression. The extent of polyamide curvature is an important consideration when studying the ability of such compounds to bind in the minor groove of DNA. The current study investigates the importance of curvature using polyamides of the form f-Im-Phenyl-Im, in which the imidazole heterocycles are placed in ortho-, meta-, and para-configurations of the phenyl moiety.

View Article and Find Full Text PDF

The N-terminal formamido group on imidazole- and pyrrole-containing polyamides causes stacked polyamides to bind in the minor groove of DNA in the staggered motif, and it also increases the binding affinity compared to those of non-formamido compounds. To further investigate the role of the N-terminal acylamido in affecting sequence specificity and binding affinity, six polyamide analogues containing the core triheterocyclic structure IPI were designed and synthesized, and the acylamido moiety reported herein includes the following: formamido (f-IPI, 1), acetamido (Ac-IPI, 2), trifluoroacetamido (Tf-IPI, 3), N-methylureido (Mu-IPI, 4), N-methylpyrrole-2-carboxamido (PIPI, 5), and the (13)C-labeled formamido-IPI compound ((13)C-f-IPI, 6). In addition, two nonacylated IPI compounds were also synthesized and examined, namely, the amino-containing (NH(2)-IPI, 7) and non-formamido (nf-IPI, 8) compounds.

View Article and Find Full Text PDF

Imidazole (Im) and Pyrrole (Py)-containing polyamides that can form stacked dimers can be programmed to target specific sequences in the minor groove of DNA and control gene expression. Even though various designs of polyamides have been thoroughly investigated for DNA sequence recognition, the use of H-pin polyamides (covalently cross-linked polyamides) has not received as much attention. Therefore, experiments were designed to systematically investigate the DNA recognition properties of two symmetrical H-pin polyamides composed of PyImPyIm (5) or f-ImPyIm (3e, f=formamido) tethered with an ethylene glycol linker.

View Article and Find Full Text PDF

Fifteen curcumin analogs were synthesized and tested for in-vitro cytotoxicity towards B16 and L1210 murine cancer cell lines using an MTT assay. Significant activity was discovered for two analogs: 8 (B16 IC(50) = 1.6 microM; L1210 IC(50) = 0.

View Article and Find Full Text PDF

Seven N-terminus modified derivatives of a previously published minor-groove binding polyamide (f-ImPyIm, 1) were synthesized and the biochemical and biophysical chemistry evaluated. These compounds were synthesized with the aim of attaining a higher level of sequence selectivity over f-ImPyIm (1), a previously published strong minor-groove binder. Two compounds possessing a furan or a benzofuran moiety at the N-terminus showed a footprint of 0.

View Article and Find Full Text PDF

Studies on the binding of a triamide f-IPI (1) to its cognate sequence labeled with a 2-aminopurine (2AP or G( *)) group are described. ITC studies showed that f-IPI (1) bound to the cognate site (ACG( *)CGT) with only 3.5-fold lower affinity than binding to the unlabeled DNA (ACGCGT) (K(eq)=2 x 10(7) and 7 x 10(7)M(-1), respectively).

View Article and Find Full Text PDF

Eleven 1,2,3,4-tetrahydro-2-thioxopyrimidine analogs of combretastatin-A4 (CA-4) were synthesized and their cytotoxicity against the growth of two murine cancer cell lines (B16 melanoma and L1210 leukemia) in culture was determined using an MTT assay. Two 2-thioxopyrimidine analogs 8f and 9a exhibited significant activity (IC50<1 microM for L1210 and <10 microM for B16 cells). Exposure of A-10 cells to 8f and 9a produced a significant reduction in cellular microtubules in interphase cells, with an EC50 value of 4.

View Article and Find Full Text PDF

The synthesis and DNA binding characteristics of a polyamide-intercalator conjugate, designed to inhibit NF-Y binding to the ICB-2 site of the topoisomerase IIalpha promoter and up-regulate the expression of the enzyme in confluent cells, are reported. Thermal denaturation and CD titration studies demonstrated binding to the cognate sequence (5'-AAGCTA-3'). Formation of ligand-induced CD bands at approximately 330 nm provided indication that the molecule interacts selectively in the minor groove of DNA.

View Article and Find Full Text PDF

The polyamide N-formamido imidazole-pyrrole-imidazole (f-ImPyIm) binds with an exceptionally high affinity for its cognate site 5'-ACGCGT-3' as a stacked, staggered, and noncovalent cooperative dimer. Investigations are presented into its sequence specificity and binding affinity when linked covalently as an H-pin "dimer". Five f-ImPyIm cross-linked analogues with six to nine methylene linkers and an eight-linked ethylene glycol linker were examined to investigate the effect of linkage and linker length on DNA binding.

View Article and Find Full Text PDF

Fourteen N-acetylated and non-acetylated 3,4,5-tri- or 2,5-dimethoxypyrazoline analogs of combretastatin-A4 (1) were synthesized. A non-acetylated derivative (5a) with the same substituents as CA-4 (1) was the most active compound in the series, with IC(50) values of 2.1 and 0.

View Article and Find Full Text PDF

Five polyamide derivatives with rationally modified C-terminus moieties were synthesized and their DNA binding specificity and affinity determined. A convergent approach was employed to synthesize polyamides containing an alkylaminopiperazine (4 and 5), a truncated piperazine (6), or an alkyldiamino-C-terminus moiety (7 and 8) with two specific objectives: to investigate the effects of number of potential cationic centers and steric bulk at the C-terminus. CD studies confirmed that compounds 4, 5, 7, and 8 bind in the minor groove of DNA.

View Article and Find Full Text PDF

An N-formamido pyrrole- and imidazole-containing triamide (f-PIP) has been shown by DNase I footprinting, SPR, and CD studies to bind as a stacked dimer to its cognate sequences: 5'-TACGAT-3' (5'-flank of the inverted CCAAT box-2 of the human topoisomerase IIalpha promoter) and 5'-ATCGAT-3'. A gel shift experiment provided evidence for f-PIP to inhibit protein-DNA interaction at the ICB2 site. Western blot studies showed that expression of the topoisomerase IIalpha gene in confluent NIH 3T3 cells was induced by treatment with f-PIP.

View Article and Find Full Text PDF

The synthesis and DNA-binding properties of a novel naphthalimide-polyamide hairpin (3) designed to target the inverted CCAAT box 2 (ICB2) site on the topoisomerase IIalpha (topoIIalpha) promoter are described. The polyamide component of 3 was derived from the minor-groove binder, 2, and tailored to bind to the 5'-TTGGT sequence found in and flanking ICB2. The propensity of mitonafide 4 to intercalate between G-C base pairs was exploited by the incorporation of a naphthalimide moiety at the N terminus of 2.

View Article and Find Full Text PDF