The composition and structure of plant-root-associated fungal communities are determined by local abiotic and biotic conditions. However, the relative influence and identity of relationships to abiotic and biotic factors may differ across environmental and ecological contexts, and fungal functional groups. Thus, understanding which aspects of root-associated fungal community ecology generalise across contexts is the first step towards a more predictive framework.
View Article and Find Full Text PDFBackground: Plants play a pivotal role in soil stabilization, with above-ground vegetation and roots combining to physically protect soil against erosion. It is possible that diverse plant communities boost root biomass, with knock-on positive effects for soil stability, but these relationships are yet to be disentangled.
Question: We hypothesize that soil erosion rates fall with increased plant species richness, and test explicitly how closely root biomass is associated with plant diversity.
Unlabelled: Atmospheric nitrogen (N) deposition alters plant biodiversity and ecosystem function in grasslands worldwide. This study examines the impact of 6 years of nutrient addition and grazing management on a sand dune grassland. Results indicate that co-limitation of N and phosphorus (P) moderates the impact of realistic rates of N addition (7.
View Article and Find Full Text PDF