Publications by authors named "Hilary E Faust"

Endothelial dysfunction is a critical feature of acute respiratory distress syndrome (ARDS) associated with higher disease severity and worse outcomes. Preclinical in vivo models of sepsis and ARDS have failed to yield useful therapies in humans, perhaps due to interspecies differences in inflammatory responses and heterogeneity of human host responses. Use of microphysiological systems (MPS) to investigate lung endothelial function may shed light on underlying mechanisms and targeted treatments for ARDS.

View Article and Find Full Text PDF

Acute respiratory distress syndrome due to non-pulmonary causes exhibits prominent endothelial activation which is challenging to assess in critically ill patients. Preclinical models of sepsis and ARDS have failed to yield useful therapies in humans, perhaps due to interspecies differences in inflammatory responses. Use of microphysiological systems (MPS) offer improved fidelity to human biological responses and better predict pharmacological responses than traditional culture.

View Article and Find Full Text PDF

Unlabelled: Circulating nucleic acids, alone and in complex with histones as nucleosomes, have been proposed to link systemic inflammation and coagulation after trauma to acute kidney injury (AKI). We sought to determine the association of circulating nucleic acids measured at multiple time points after trauma with AKI risk.

Design: We conducted a prospective cohort study of trauma patients, collecting plasma on presentation and at 6, 12, 24, and 48 hours, defining AKI over the first 6 days by Kidney Disease Improving Global Outcomes serum creatinine and dialysis criteria.

View Article and Find Full Text PDF

Background: Critically ill patients who develop ARDS have substantial associated morbidity and mortality. Circulating mitochondrial DNA (mtDNA) released during critical illness causes endothelial dysfunction and lung injury in experimental models. This study hypothesized that elevated plasma mtDNA is associated with ARDS in critically ill patients with trauma and sepsis.

View Article and Find Full Text PDF

Background: Necroptosis, a form of programmed cell death mediated by receptor interacting serine/threonine-protein kinase-3 (RIPK3), is implicated in murine models of acute respiratory distress syndrome (ARDS). We hypothesized that plasma RIPK3 concentrations in sepsis and trauma would be associated with ARDS development and that plasma RIPK3 would reflect changes in lung tissue RIPK3 in a murine model of systemic inflammation.

Methods: We utilized prospective cohort studies of critically ill sepsis (n = 120) and trauma (n = 180) patients and measured plasma RIPK3 at presentation and 48 h.

View Article and Find Full Text PDF

Telomere length (TL) decreases with cellular ageing and biological stressors. As advanced donor and recipient ages are risk factors for chronic lung allograft dysfunction (CLAD), we hypothesised that decreased age-adjusted donor TL would predict earlier onset of CLAD. Shorter donor TL was associated with increased risk of CLAD or death (HR 1.

View Article and Find Full Text PDF