Introduction: CT1812 is in clinical development for the treatment of Alzheimer's disease (AD). Cerebrospinal fluid (CSF) exploratory proteomics was employed to identify pharmacodynamic biomarkers of CT1812 in mild to moderate AD from two independent clinical trials.
Methods: Unbiased analysis of tandem-mass tag mass spectrometry (TMT-MS) quantitative proteomics, pathway analysis and correlation analyses with volumetric magnetic resonance imaging (vMRI) were performed for the SPARC cohort (NCT03493282).
Astrogliosis after spinal cord injury (SCI) is a major impediment to functional recovery. More than half of new astrocytes generated after SCI are derived from ependymal zone stem cells (EZCs). We demonstrate that expression of β1-integrin increases in EZCs following SCI in mice.
View Article and Find Full Text PDFWe report the construction of DNA nanotubes covalently functionalized with the cell adhesion peptide RGDS as a bioactive substrate for neural stem cell differentiation. Alteration of the Watson-Crick base pairing program that builds the nanostructures allowed us to probe independently the effect of nanotube architecture and peptide bioactivity on stem cell differentiation. We found that both factors instruct synergistically the preferential differentiation of the cells into neurons rather than astrocytes.
View Article and Find Full Text PDFAstrogliosis with glial scar formation after damage to the nervous system is a major impediment to axonal regeneration and functional recovery. The present study examined the role of β1-integrin signaling in regulating astrocytic differentiation of neural stem cells. In the adult spinal cord β1-integrin is expressed predominantly in the ependymal region where ependymal stem cells (ESCs) reside.
View Article and Find Full Text PDFEph receptors, the largest family of surface-bound receptor tyrosine kinases and their ligands, the ephrins, mediate a wide variety of cellular interactions in most organ systems throughout both development and maturity. In the forming cerebral cortex, Eph family members are broadly and dynamically expressed in particular sets of cortical cells at discrete times. Here, we review the known functions of Eph-mediated intercellular signaling in the generation of progenitors, the migration of maturing cells, the differentiation of neurons, the formation of functional connections, and the choice between life and death during corticogenesis.
View Article and Find Full Text PDFEph receptors are widely expressed during cerebral cortical development, yet a role for Eph signaling in the generation of cells during corticogenesis has not been shown. Cortical progenitor cells selectively express one receptor, EphA4, and reducing EphA4 signaling in cultured progenitors suppressed proliferation, decreasing cell number. In vivo, EphA4(-/-) cortex had a reduced area, fewer cells and less cell division compared with control cortex.
View Article and Find Full Text PDF