SNAPSHOT USA is a multicontributor, long-term camera trap survey designed to survey mammals across the United States. Participants are recruited through community networks and directly through a website application (https://www.snapshot-usa.
View Article and Find Full Text PDFWildlife must adapt to human presence to survive in the Anthropocene, so it is critical to understand species responses to humans in different contexts. We used camera trapping as a lens to view mammal responses to changes in human activity during the COVID-19 pandemic. Across 163 species sampled in 102 projects around the world, changes in the amount and timing of animal activity varied widely.
View Article and Find Full Text PDFManaging wildlife populations in the face of global change requires regular data on the abundance and distribution of wild animals, but acquiring these over appropriate spatial scales in a sustainable way has proven challenging. Here we present the data from Snapshot USA 2020, a second annual national mammal survey of the USA. This project involved 152 scientists setting camera traps in a standardized protocol at 1485 locations across 103 arrays in 43 states for a total of 52,710 trap-nights of survey effort.
View Article and Find Full Text PDFWith the accelerating pace of global change, it is imperative that we obtain rapid inventories of the status and distribution of wildlife for ecological inferences and conservation planning. To address this challenge, we launched the SNAPSHOT USA project, a collaborative survey of terrestrial wildlife populations using camera traps across the United States. For our first annual survey, we compiled data across all 50 states during a 14-week period (17 August-24 November of 2019).
View Article and Find Full Text PDFAnurans (frogs and toads) are among the most globally threatened taxonomic groups. Successful conservation of anurans will rely on improved data on the status and changes in local populations, particularly for rare and threatened species. Automated sensors, such as acoustic recorders, have the potential to provide such data by massively increasing the spatial and temporal scale of population sampling efforts.
View Article and Find Full Text PDFWe evaluated a 20-yr-old spatially explicit model (SEM) that predicted the spatial expansion of reintroduced Persian fallow deer in northern Israel. Using the current distribution of the deer and based on multi-model inference we assessed the accuracy of the SEM's prediction and what other factors affected the population's current distribution. If the SEM's projection was still valid, the leading model in the multi-model inference would include only the SEM's projection as an explanatory variable with a good fit.
View Article and Find Full Text PDFBackground: In recent decades, a decrease of passerine densities was documented in Mediterranean shrublands. At the same time, a widespread encroachment of Aleppo pines (Pinus halepensis) to Mediterranean shrubland occurred. Such changes in vegetation structure may affect passerine predator assemblage and densities, and in turn impact passerine densities.
View Article and Find Full Text PDF