is a resident of the human gut, though upon translocation to the blood or body tissues, it can be pathogenic. Here we discover and characterize two peptide-based quorum-sensing systems that transcriptionally modulate de novo purine biosynthesis in . Using a comparative genomic analysis, we find that most enterococcal species do not encode this system; , and , three species that are closely related to , encode one of the two systems, and only encodes both systems.
View Article and Find Full Text PDFDrug-resistant bacteria are outpacing traditional antibiotic discovery efforts. Here, we computationally screened 444,054 previously reported putative small protein families from 1,773 human metagenomes for antimicrobial properties, identifying 323 candidates encoded in small open reading frames (smORFs). To test our computational predictions, 78 peptides were synthesized and screened for antimicrobial activity in vitro, with 70.
View Article and Find Full Text PDFDrug-resistant bacteria are outpacing traditional antibiotic discovery efforts. Here, we computationally mined 444,054 families of putative small proteins from 1,773 human gut metagenomes, identifying 323 peptide antibiotics encoded in small open reading frames (smORFs). To test our computational predictions, 78 peptides were synthesized and screened for antimicrobial activity , with 59% displaying activity against either pathogens or commensals.
View Article and Find Full Text PDFBacteriophages have important roles in the ecology of the human gut microbiome but are under-represented in reference databases. To address this problem, we assembled the Metagenomic Gut Virus catalogue that comprises 189,680 viral genomes from 11,810 publicly available human stool metagenomes. Over 75% of genomes represent double-stranded DNA phages that infect members of the Bacteroidia and Clostridia classes.
View Article and Find Full Text PDFNo method exists to measure large-scale translation of genes in uncultured organisms in microbiomes. To overcome this limitation, we develop MetaRibo-Seq, a method for simultaneous ribosome profiling of tens to hundreds of organisms in microbiome samples. MetaRibo-Seq was benchmarked against gold-standard Ribo-Seq in a mock microbial community and applied to five different human fecal samples.
View Article and Find Full Text PDFSmall proteins are traditionally overlooked due to computational and experimental difficulties in detecting them. To systematically identify small proteins, we carried out a comparative genomics study on 1,773 human-associated metagenomes from four different body sites. We describe >4,000 conserved protein families, the majority of which are novel; ∼30% of these protein families are predicted to be secreted or transmembrane.
View Article and Find Full Text PDFThe evolutionary pressure imposed by phage predation on bacteria and archaea has resulted in the development of effective anti-phage defence mechanisms, including restriction-modification and CRISPR-Cas systems. Here, we report on a new defence system, DISARM (defence island system associated with restriction-modification), which is widespread in bacteria and archaea. DISARM is composed of five genes, including a DNA methylase and four other genes annotated as a helicase domain, a phospholipase D (PLD) domain, a DUF1998 domain and a gene of unknown function.
View Article and Find Full Text PDFThe perpetual arms race between bacteria and phage has resulted in the evolution of efficient resistance systems that protect bacteria from phage infection. Such systems, which include the CRISPR-Cas and restriction-modification systems, have proven to be invaluable in the biotechnology and dairy industries. Here, we report on a six-gene cassette in Bacillus cereus which, when integrated into the Bacillus subtilis genome, confers resistance to a broad range of phages, including both virulent and temperate ones.
View Article and Find Full Text PDFToxin-antitoxin (TA) modules, composed of a toxic protein and a counteracting antitoxin, play important roles in bacterial physiology. We examined the experimental insertion of 1.5 million genes from 388 microbial genomes into an Escherichia coli host using more than 8.
View Article and Find Full Text PDFIn the process of clone-based genome sequencing, initial assemblies frequently contain cloning gaps that can be resolved using cloning-independent methods, but the reason for their occurrence is largely unknown. By analyzing 9,328,693 sequencing clones from 393 microbial genomes, we systematically mapped more than 15,000 genes residing in cloning gaps and experimentally showed that their expression products are toxic to the Escherichia coli host. A subset of these toxic sequences was further evaluated through a series of functional assays exploring the mechanisms of their toxicity.
View Article and Find Full Text PDFBackground: Cheyne-Stokes breathing (CSB) has been associated with heart failure (HF) patients for many years; however, its true prevalence and its prognostic implications are still obscure.
Hypothesis: The goal of this study was to investigate the prevalence and the possible prognostic implications of nocturnal CSB in advanced heart failure patients.
Methods: We performed single night full polysomonography ambulatory sleep studies in 71 HF patients.
Morphogen gradients are established by the localized production and subsequent diffusion of signaling molecules. It is generally assumed that cell fates are induced only after morphogen profiles have reached their steady state. Yet, patterning processes during early development occur rapidly, and tissue patterning may precede the convergence of the gradient to its steady state.
View Article and Find Full Text PDFA primary goal of systems biology is to understand the design principles of the transcription networks that govern the timing of gene expression. Here we measured promoter activity for approximately 100 genes in parallel from living cells at a resolution of minutes and accuracy of 10%, based on GFP and Lux reporter libraries. Focusing on the amino-acid biosynthesis systems of Escherichia coli, we identified a previously unknown temporal expression program and expression hierarchy that matches the enzyme order in unbranched pathways.
View Article and Find Full Text PDF