By directly simulating Maxwell's equations via the finite-difference time-domain (FDTD) method, we numerically demonstrate the possibility of achieving high-efficiency second harmonic generation (SHG) in a structure consisting of a microscale doubly-resonant ring resonator side-coupled to two adjacent waveguides. We find that ≳ 94% conversion efficiency can be attained at telecom wavelengths, for incident powers in the milliwatts, and for reasonably large bandwidths (Q ∼ 1000s). We demonstrate that in this high efficiency regime, the system also exhibits limit-cycle or bistable behavior for light incident above a threshold power.
View Article and Find Full Text PDFWe show that the difficulty of cloaking is fundamentally limited by delay-loss and delay-bandwidth limitations that worsen as the size of the object to be cloaked increases relative to the wavelength, using a simple model of ground-plane cloaking. These limitations must be considered when scaling experimental cloaking demonstrations up from wavelength-scale objects.
View Article and Find Full Text PDF