Publications by authors named "Hikaru Sano"

Sulfide solid electrolytes have potential in practical all-solid-state batteries owing to their high formability and ionic conductivity. However, sulfide solid electrolytes are limited by the generation of toxic hydrogen sulfide and conductivity deterioration upon moisture exposure. Although numerous studies have investigated the hydrolysis degradation induced by "moisture," the influence of "atmospheric gases" during moisture exposure has not been extensively investigated despite the importance for practical fabrication.

View Article and Find Full Text PDF

Although moisture-induced deterioration mechanisms in sulfide solid electrolytes to enhance atmospheric stability have been investigated, the additional impact of CO exposure remains unclear. This study investigated the generation of HS from LiSnS under HO and CO exposure. LiSnS was exposed to Ar gas at a dew point of 0 °C with and without 500 ppm of CO, and its ion conductive properties were evaluated.

View Article and Find Full Text PDF

The sulfide solid electrolyte LiSnS has garnered considerable interest due to its exceptional moisture durability, which is attributed to its stable hydrated state. However, a major limitation of certain sulfide solid electrolytes, including LiSnS, is their low reduction durability, which limits their application in the negative electrodes of all-solid-state batteries and impedes qualitative material development assessments. In this study, we introduced a quantitative and straightforward method for evaluating the reductive decomposition of LiSnS to better understand its degradation mechanism.

View Article and Find Full Text PDF

Organic rechargeable batteries that do not use any scarce heavy metals are candidates for the next generation of rechargeable batteries; although, it is not easy to realize both high capacity and long cycle life. Organic compounds linked by amide bonds are expected to have superior recycling properties after battery degradation, since they will become a single monomer upon hydrolysis. In this study, anthraquinone was chosen as a model redox active unit, and dimeric and trimeric compounds were synthesized, their cycle performances as electrode materials for use in rechargeable batteries were compared, and a trend in which oligomerization improves cycle properties was confirmed.

View Article and Find Full Text PDF

The features of the electrode surface film during Li-metal deposition and dissolution cycles are essential for understanding the mechanism of the negative electrode reaction in Li-metal battery cells. The physical and chemical property changes of the interface during the initial stages of the reaction should be investigated under operando conditions. In this study, we focused on the changes in the optical properties of the electrode surface film of the negative electrode of a Li-metal battery.

View Article and Find Full Text PDF

The initial process of Li-metal electrodeposition on the negative electrode surface determines the charging performance of Li-metal secondary batteries. However, minute depositions or the early processes of nucleation and growth of Li metal are generally difficult to detect under operando conditions. In this study, we propose an optical diagnostic approach to address these challenges.

View Article and Find Full Text PDF

Rare-metal-free and high-performance secondary batteries are necessary for improving the efficiency of renewable energy systems. Organic compounds are attractive candidates for the active material of such batteries. Many studies have reported organic active materials that show high energy density per active material weight.

View Article and Find Full Text PDF

Organic compounds as electrode materials can contribute to sustainability because they are nontoxic and environmentally abundant. The working mechanism during charge-discharge for reported organic compounds as electrode materials is yet to be completely understood. In this study, the structural behavior of 2,5-dimethoxy-1,4-benzoquinone (DMBQ) during charge-discharge is investigated by using NMR spectroscopy, energy-dispersive X-ray spectroscopy, magnetic measurements, operando Raman spectroscopy, and operando X-ray diffraction.

View Article and Find Full Text PDF

Investigation of solid electrolyte interphases (SEIs) on negative electrode surfaces is essential to improve the stable charge-discharge performance of rechargeable lithium-air batteries (Li-O2 batteries). In this study, a direct investigation of SEI films is conducted using analytical transmission electron microscopy (TEM). A thin Cu specimen is prefabricated for TEM observation and is utilised as a model substrate for SEI formation.

View Article and Find Full Text PDF

Many types of batteries have been proposed as next-generation energy-storage systems. One candidate is a rocking-chair-type "molecular ion battery" in which a molecular ion, instead of Li , works as a charge carrier. Previously, we reported a viologen-type derivative as a negative electrode material that releases and receives PF anions during the charge-discharge process; however, its redox potential was not satisfactorily low.

View Article and Find Full Text PDF

An anthraquinone (AQ)-based dimer and trimer linked by a triple bond (-C≡C-) were newly synthesized as active materials for the positive electrode of rechargeable lithium batteries. These synthesized oligomers exhibited an initial discharge capacity of about 200 mAh g with an average voltage of 2.2-2.

View Article and Find Full Text PDF

Simulating three transport phenomena-ionic conductivity, viscosity, and self-diffusion coefficient-in a common Monte-Carlo framework, we discuss their relationship to the intermolecular interactions of electrolyte solutions at high concentrations (C/mol l ∼ 1). The simulation is predicated on a pseudolattice model of the solution. The ions and solvents (collectively termed "molecules") are considered dimensionless points occupying the lattice sites.

View Article and Find Full Text PDF

Nanoscale investigations of Li deposition on the surface of a Li electrode are crucial to understand the initial mechanism of dendrite growth in rechargeable Li-metal batteries during charging. Here, we studied the initial Li deposition and related protrusion growth processes at the surface of the Li electrode with atomic force microscopy (AFM) in a galvanostatic experiment under operand condition. A flat Li-metal surface prepared by precision cutting a Li-metal wire in electrolyte solution (100 mM LiPF in propylene carbonate) was observed with peak-force-tapping mode AFM under an inert atmosphere.

View Article and Find Full Text PDF

Is it possible to exceed the lithium redox potential in electrochemical systems? It seems impossible to exceed the lithium potential because the redox potential of the elemental lithium is the lowest among all the elements, which contributes to the high voltage characteristics of the widely used lithium ion battery. However, it should be possible when we use a molecule-based ion which is not reduced even at the lithium potential in principle. Here we propose a new model system using a molecular electrolyte salt with polymer-based active materials in order to verify whether a molecular ion species serves as a charge carrier.

View Article and Find Full Text PDF

Electrochemically active self-assembled monolayers (SAM) have been successfully fabricated with atomic-scale uniformity on a silicon (Si)(111) surface by immobilizing vinylferrocene (VFC) molecules through Si-C covalent bonds. The reaction of VFC with the hydrogen-terminated Si (H-Si)(111) surface was photochemically promoted by irradiation of visible light on a H-Si(111) substrate immersed in n-decane solution of VFC. We found that aggregation and polymerization of VFC was avoided when n-decane was used as a solvent.

View Article and Find Full Text PDF

The objective of this study was to use a microfluidic sperm sorter (MFSS), designed to isolate motile human spermatozoa with laminar flows (no centrifugation), for porcine IVF. Boar spermatozoa were diluted at 1 x 10(8) cells/mL with a diluent containing 20% seminal fluid and flowed with modified TCM-199 (mM199, with 5 mM caffeine) to introduce motile sperm into the exit chamber for IVF. In Experiment 1, after flowing for 5 min, sperm concentration varied significantly among specific sites within the MFSS collecting chamber (range, 0.

View Article and Find Full Text PDF

For practical application of self-assembled monolayers (SAMs), knowledge of their chemical durability in acidic or basic solutions is important. In the present work, a series of SAMs directly immobilized on a silicon (111) surface through Si-C or Si-O-C covalent bonds without a native oxide layer were prepared by thermally activated chemical reactions of a hydrogen-terminated Si(111) substrate with linear molecules, i.e.

View Article and Find Full Text PDF

Photopatterning of a hexadecyl (HD) monolayer has been demonstrated using vacuum ultraviolet (VUV; lambda = 172 nm) light under controlled vacuum pressure with the objective of minimizing the pattern dimension. X-ray photoelectron spectroscopy (XPS) and lateral force microscopy (LFM) studies reveal that photodegradation of the HD monolayer not only is limited to the regions exposed to VUV but also spreads under the masked regions. The strong oxidants generated by VUV irradiation to atmospheric oxygen and water vapor diffuse toward the masked regions through the nanoscopic channels and photodissociate the monolayer under the masked area, near the photomask apertures, resulting in broadening of the photopattern.

View Article and Find Full Text PDF

Due to the recent outbreak of avian influenza, transportation of frozen canine semen with egg yolk has been sharply restricted. Thus, there is urgent need to develop a novel egg yolk-free extender for freezing canine spermatozoa. In the present study, the effect of using skim milk/glucose (SG)-based extender without egg yolk on the motility and fertilizing capacity of canine spermatozoa frozen-thawed in the presence of glycerol was examined.

View Article and Find Full Text PDF

Monolayers attached to a Si(111) surface through Si-C-C or Si-O-C covalent bonds were prepared by the thermally activated reaction (150 degrees C) of vinylferrocene (VFC) or ferrocenecarboxaldehyde (FCA) molecules with hydrogen-terminated Si(111) substrate in order to compare their reactivities. The resulting monolayers gave a couple of redox waves on voltammograms due to ferrocenyl moieties tethered at the surface. The voltammetric quantification revealed that the growth of electrochemically active layers was terminated within 5 h and the final surface coverages of the active ferrocenyl moieties were 58% and 16% for VFC- and FCA-based monolayers, respectively, indicating that the aldehyde molecule is less reactive.

View Article and Find Full Text PDF