Conjugates of semiconductor quantum dots (QDs) and antibodies have emerged as a promising bioprobes due to their great combination of QD's efficient fluorescence and the high specificity of antigen-antibody reactions. For further developments in this field, it is essential to understand the molecular conformation of the QD-antibody conjugates at the single-molecule scale. Here, we report on the direct imaging of QD-antibody conjugates at the single-molecule scale by using high-speed atomic force microscopy (HS-AFM).
View Article and Find Full Text PDFJ Pharm Biomed Anal
September 2017
An approach similar to the enzyme-linked immunosorbent assay (ELISA), with the advantage of saving time and effort but exhibiting high performance, was developed using orientation-directed half-part antibodies immobilized on CdSe/ZnS quantum dots. ELISA is a widely accepted assay used to detect the presence of a target substance. However, it takes time to quantify the target with specificity and sensitivity owing to signal amplification.
View Article and Find Full Text PDFConjugates of semiconductor quantum dots (QDs) and organic dyes have been receiving attention as fluorescence biological sensing materials. In designing such sensors, a most important parameter is the number of organic-dye molecules that conjugate to a QD. If a precise separation method was developed, it might be possible to control conjugation without knowing the exact number of conjugated dye molecules per QD.
View Article and Find Full Text PDF