Publications by authors named "Hieronymus T"

Article Synopsis
  • This study investigates the bicipital groove (BG) morphology to understand its implications in shoulder health, noting previous research limitations.
  • A total of 17 cadavers (9 male, 8 female) were dissected to measure BG dimensions, including width, depth, and length.
  • Results indicated that males had a significantly wider BG than females, but no significant differences were found in depth or length between genders.
View Article and Find Full Text PDF

As bones age in most mammals, they typically become more fragile. This state of bone fragility is often associated with more homogenous collagen fiber orientations (CFO). Unlike most mammals, bats maintain mechanically competent bone throughout their lifespans, but little is known of positional and age-related changes in CFO within wing bones.

View Article and Find Full Text PDF

Signaling through the HGF receptor/Met in skin-resident Langerhans cells (LCs) and dermal dendritic cells (DCs) is essential for their emigration toward draining lymph nodes upon inflammation-induced activation. In this study, we addressed the role of Met signaling in distinct steps of LC/dermal DC emigration from the skin by employing a conditionally Met-deficient mouse model (Met). We found that Met deficiency severely impaired podosome formation in DCs and concomitantly decreased the proteolytic degradation of gelatin.

View Article and Find Full Text PDF

This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy, and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs and various non-lymphoid tissues. Recent studies have provided evidence for an increasing number of phenotypically distinct conventional DC (cDC) subsets that on one hand exhibit a certain functional plasticity, but on the other hand are characterized by their tissue- and context-dependent functional specialization. Here, we describe a selection of assays for the functional characterization of mouse and human cDC.

View Article and Find Full Text PDF

Engineered magnetic nanoparticles (MNPs) are emerging as advanced tools for medical applications. The coating of MNPs using polyelectrolytes (PEs) is a versatile means to tailor MNP properties and is used to optimize MNP functionality. Dendritic cells (DCs) are critical regulators of adaptive immune responses.

View Article and Find Full Text PDF

The spleen contains phenotypically and functionally distinct conventional dendritic cell (cDC) subpopulations, termed cDC1 and cDC2, which each can be divided into several smaller and less well-characterized subsets. Despite advances in understanding the complexity of cDC ontogeny by transcriptional programming, the significance of posttranslational modifications in controlling tissue-specific cDC subset immunobiology remains elusive. Here, we identified the cell-surface-expressed A-disintegrin-and-metalloproteinase 10 (ADAM10) as an essential regulator of cDC1 and cDC2 homeostasis in the splenic marginal zone (MZ).

View Article and Find Full Text PDF

Bats are the only mammals to have achieved powered flight. A key innovation allowing for bats to conquer the skies was a forelimb modified into a flexible wing. The wing bones of bats are exceptionally long and dynamically bend with wingbeats.

View Article and Find Full Text PDF

Locomotion on the narrow and compliant supports of the arboreal environment is inherently precarious. Previous studies have identified a host of morphological and behavioral specializations in arboreal animals broadly thought to promote stability when on precarious substrates. Less well-studied is the role of the tail in maintaining balance.

View Article and Find Full Text PDF

Objectives: Primate diagonal sequence (DS) gaits are often argued to be an adaptation for moving and foraging in the fine-branch niche; however, existing data have come predominantly from laboratory studies that are limited in taxonomic breadth and fail to account for the structural and ecological variation of natural substrates. We test the extent to which substrate diameter and orientation influence gait sequence type and limb phase in free-ranging primates, as well as how phylogenetic relatedness might condition response patterns.

Materials And Methods: We filmed quadrupedal locomotion in 11 platyrrhine species at field sites in Ecuador and Costa Rica and measured the diameter and orientation of locomotor substrates using remote sensors.

View Article and Find Full Text PDF

Given that most species of primates are predominantly arboreal, maintaining the ability to move among branches of varying sizes has presumably been a common selective force in primate evolution. However, empirical evaluations of the relationships between morphological variation and characteristics of substrate geometry, such as substrate diameter relative to an animal's body mass, have been limited by the lack of quantified substrate usage in the wild. Here we use recently published quantitative data to assess the relationships between relative substrate size and talar morphology in nine New World monkey species at the Tiputini Biodiversity Station, Ecuador.

View Article and Find Full Text PDF

Crocodylians evolved some of the most characteristic skulls of the animal kingdom with specializations for semiaquatic and ambush lifestyles, resulting in a feeding apparatus capable of tolerating high biomechanical loads and bite forces and a head with a derived sense of trigeminal-nerve-mediated touch. The mandibular symphysis accommodates these specializations being both at the end of a biomechanical lever and an antenna for sensation. Little is known about the anatomy of the crocodylian mandibular symphysis, hampering our understanding of form, function, and evolution of the joint in extant and extinct lineages.

View Article and Find Full Text PDF

Background: The lake deposits of the informal Ruby Paper Shale unit, part of the Renova Formation of Montana, have yielded abundant plant fossils that document Late Eocene - Early Oligocene global cooling in western North America. A nearly complete small bird with feather impressions was recovered from this unit in in 1959, but has only been informally mentioned.

Results: Here we describe this fossil and identify it as a new species of Zygodactylus, a stem lineage passerine with a zygodactyl foot.

View Article and Find Full Text PDF

Nonalcoholic steatohepatitis (NASH) is the most common chronic, progressive liver disease in Western countries. The significance of cellular interactions of the HGF/c-Met axis in different liver cell subtypes and its relation to the oxidative stress response remains unclear so far. Hence, the present study is aimed at investigating the role of c-Met and the interaction with the oxidative stress response during NASH development in mice and humans.

View Article and Find Full Text PDF

Hominoid remains from Miocene deposits in India and Pakistan have played a pivotal role in understanding the evolution of great apes and humans since they were first described in the 19th Century. We describe here a hominoid maxillary fragment preserving the canine and cheek teeth collected in 2011 from the Kutch (= Kachchh) basin in the Kutch district, Gujarat state, western India. A basal Late Miocene age is proposed based on the associated faunal assemblage that includes Hipparion and other age-diagnostic mammalian taxa.

View Article and Find Full Text PDF

Metabolic profiles of four drugs possessing diverse metabolic pathways (timolol, meloxicam, linezolid, and XK469) were compared following incubations in both suspended cryopreserved human hepatocytes and the HREL hepatocyte coculture model. In general, minimal metabolism was observed following 4-hour incubations in both suspended hepatocytes and the HREL model, whereas incubations conducted up to 7 days in the HREL coculture model resulted in more robust metabolic turnover. In the case of timolol, in vivo human data suggest that 22% of the dose is transformed via multistep oxidative opening of the morpholine moiety.

View Article and Find Full Text PDF

Objectives: Laboratory studies have yielded important insights into primate locomotor mechanics. Nevertheless, laboratory studies fail to capture the range of ecological and structural variation encountered by free-ranging primates. We present techniques for collecting kinematic data on wild primates using consumer grade high-speed cameras and demonstrate novel methods for quantifying metric variation in arboreal substrates.

View Article and Find Full Text PDF

Langerhans cells (LCs), the epidermal dendritic cell (DC) subset, express the transmembrane tyrosine kinase receptor Met also known as hepatocyte growth factor (HGF) receptor. HGF is the exclusive ligand of Met and upon binding executes mitogenic, morphogenic, and motogenic activities to various cells. HGF exerts anti-inflammatory activities Met signaling and was found to regulate various functions of immune cells, including differentiation and maturation, cytokine production, cellular migration and adhesion, and T cell effector function.

View Article and Find Full Text PDF

Mucosal Langerhans cells (LCs) originate from pre-dendritic cells and monocytes. However, the mechanisms involved in their in situ development remain unclear. Here, we demonstrate that the differentiation of murine mucosal LCs is a two-step process.

View Article and Find Full Text PDF

In utero, baleen whales initiate the development of several dozens of teeth in upper and lower jaws. These tooth germs reach the bell stage and are sometimes mineralized, but toward the end of prenatal life they are resorbed and no trace remains after birth. Around the time that the germs disappear, the keratinous baleen plates start to form in the upper jaw, and these form the food-collecting mechanism.

View Article and Find Full Text PDF

The earliest cetaceans were interpreted as semi-aquatic based on the presence of thickened bones and stable oxygen isotopes in tooth enamel. However, the origin of aquatic behaviors in cetacean relatives (e.g.

View Article and Find Full Text PDF

Mechanisms for passively coordinating forelimb movements and flight feather abduction and adduction have been described separately from both in vivo and ex vivo studies. Skeletal coordination has been identified as a way for birds to simplify the neuromotor task of controlling flight stroke, but an understanding of the relationship between skeletal coordination and the coordination of the aerodynamic control surface (the flight feathers) has been slow to materialize. This break between the biomechanical and aerodynamic approaches - between skeletal kinematics and airfoil shape - has hindered the study of dynamic flight behaviors.

View Article and Find Full Text PDF

Nearly all living artiodactyls (even-toed ungulates) possess a derived cranial arterial pattern that is highly distinctive from most other mammals. Foremost among a suite of atypical arterial configurations is the functional and anatomical replacement of the internal carotid artery with an extensive, subdural arterial meshwork called the carotid rete. This interdigitating network branches from the maxillary artery and is housed within the cavernous venous sinus.

View Article and Find Full Text PDF

The field of evolutionary developmental biology is broadly focused on identifying the genetic and developmental mechanisms underlying morphological diversity. Connecting the genotype with the phenotype means that evo-devo research often considers a wide range of evidence, from genetics and morphology to fossils. In this commentary, we provide an overview and framework for integrating fossil ontogenetic data with developmental data using phylogenetic comparative methods to test macroevolutionary hypotheses.

View Article and Find Full Text PDF
Article Synopsis
  • Langerhans cells (LCs) in mucosal epithelium, unlike skin LCs, develop from circulating radiosensitive precursors rather than radioresistant embryonic ones.
  • Mucosal LCs can be divided into two subsets: CD103(+)CD11b(lo) (CD103(+)) and CD11b(+)CD103(-) (CD11b(+)), with different origins for each subset.
  • Despite differing origins, oral LCs share similar transcriptomic signatures and immune functions with skin LCs, indicating their classification as genuine LCs and suggesting multiple precursor sources (embryonic, pre-DC, monocytic) for LCs in different tissues.
View Article and Find Full Text PDF