Publications by authors named "Hiep L X Vu"

CD163 is the primary receptor for PRRSV, and its SRCR5 domain, encoded by exon 7, is crucial for supporting PRRSV infection. Previous studies have used CRISPR/Cas9 technology to remove exon 7 from the host genome, and the edited pigs were completely resistant to PRRSV infection. In this study, we used CRISPR/Cas9 technology mimicking an adenine base editor (ABE) to edit the splice acceptor site of exon 7, rendering it nonfunctional.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome virus (PRRSV) has a restricted host specificity, primarily infecting porcine macrophages. Notably, an exception to such macrophage-restricted tropism has been observed in sexually active boars, where the virus infects and induces apoptosis in the germinal epithelium, resulting in viral dissemination in the ejaculate. Whether this phenomenon occurs in prepubertal animals remains unclear.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of a syndrome characterized by reproductive failure and respiratory complications (PRRS). Early detection and classification of PRRSV strains are vital for appropriate management strategies to minimize loss following outbreaks. The most widely used classification method for PRRSV is based on open reading frame 5 (ORF5) sequences.

View Article and Find Full Text PDF

Previous studies have suggested that porcine peritoneal macrophages (PPMs) are resistant to PRRSV infection, whereas porcine alveolar macrophages (PAMs) are highly susceptible. This contrast is intriguing, as both cell types belong to the same monocyte/macrophage family. The current study aimed to investigate the host factors contributing to the differing susceptibility of PPMs and PAMs to PRRSV infection.

View Article and Find Full Text PDF
Article Synopsis
  • African swine fever virus (ASFV) causes a deadly disease in pigs and is linked to the ability of certain virulent strains to inhibit type I interferon (IFN) production, impacting the host immune response.
  • ASFV encodes proteins that disrupt key immune signaling pathways, specifically targeting the cGAS-STING and JAK-STAT pathways, thereby reducing IFN production and antiviral responses.
  • The review discusses the viral proteins involved in this immune suppression and explores their potential role in developing a live-attenuated vaccine for ASFV.
View Article and Find Full Text PDF

Unlabelled: In 2009, a novel swine-origin H1N1 virus emerged, causing a pandemic. The virus, known as H1N1pdm09, quickly displaced the circulating H1 lineage and became the dominant seasonal influenza A virus subtype infecting humans. Human-to-swine spillovers of the H1N1pdm09 have occurred frequently, and each occurrence has led to sustained transmission of the human-origin H1N1pdm09 within swine populations.

View Article and Find Full Text PDF

African swine fever virus (ASFV) has spread through many countries and regions worldwide, causing significant losses. Timely detection of ASFV-infected pigs is crucial for disease control. In this study, we assessed the performance of two pen-side tests: a portable real-time PCR (qPCR) test for detecting viral genomic DNA and a lateral flow immunoassay (LFIA) for detecting viral antigens.

View Article and Find Full Text PDF

African Swine Fever (ASF) is a highly lethal viral disease in swine, with mortality rates approaching 100%. The disease has spread to many swine-producing countries, leading to significant economic losses and adversely impacting global food security. Extensive efforts have been directed toward developing effective ASF vaccines.

View Article and Find Full Text PDF

African swine fever virus is known to suppress type-I interferon (IFN) responses. The main objective of this study was to screen early-expressed viral genes for their ability to suppress IFN production. Out of 16 early genes examined, I73R exhibited robust suppression of cGAS-STING-induced IFN-β promoter activities, impeding the function of both IRF3 and NF-κB transcription factors.

View Article and Find Full Text PDF

Pichinde virus (PICV) can infect several animal species and has been developed as a safe and effective vaccine vector. Our previous study showed that pigs vaccinated with a recombinant PICV-vectored vaccine expressing the hemagglutinin (HA) gene of an H3N2 influenza A virus of swine (IAV-S) developed virus-neutralizing antibodies and were protected against infection by the homologous H3N2 strain. The objective of the current study was to evaluate the immunogenicity and protective efficacy of a trivalent PICV-vectored vaccine expressing HA antigens from the three co-circulating IAV-S subtypes: H1N1, H1N2, and H3N2.

View Article and Find Full Text PDF

African swine fever virus (ASFV) is circulating in many swine-producing countries, causing significant economic losses. It is observed that pigs experimentally vaccinated with a live-attenuated virus (LAV) but not a killed virus (KV) vaccine develop solid homologous protective immunity. The objective of this study was to comparatively analyze antibody profiles between pigs vaccinated with an LAV vaccine and those vaccinated with a KV vaccine to identify potential markers of vaccine-induced protection.

View Article and Find Full Text PDF

The Influenza A virus of swine (IAV-S) is highly prevalent and causes significant economic losses to swine producers. Due to the highly variable and rapidly evolving nature of the virus, it is critical to develop a safe and versatile vaccine platform that allows for frequent updates of the vaccine immunogens to cope with the emergence of new viral strains. The main objective of this study was to assess the feasibility of using lipid nanoparticles (LNPs) as nanocarriers for delivering DNA plasmid encoding the viral hemagglutinin (HA) gene in pigs.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome virus (PRRSV) has a restricted tropism for macrophages and CD163 is a key receptor for infection. In this study, the PRRSV strain NCV1 was passaged on MARC-145 cells for 95 passages, and two plaque-clones (C1 and C2) were randomly selected for further analysis. The C1 virus nearly lost the ability to infect porcine alveolar macrophages (PAMs), as well as porcine kidney cells expressing porcine CD163 (PK15-pCD163), while the C2 virus replicates well in these two cell types.

View Article and Find Full Text PDF
Article Synopsis
  • Influenza A virus of swine (IAV-S) poses significant economic threats to the swine industry, and the hemagglutinin (HA) protein is a key target for vaccine formulation.
  • The study tested a recombinant tri-segmented Pichinde virus (rPICV) as a viral vector to introduce the HA antigen and protect weaned pigs from IAV-S, using four groups with different treatments.
  • Results indicated that pigs vaccinated with rPICV expressing HA antigen (T03) and those receiving recombinant HA protein (T04) developed strong immune responses and showed no symptoms or viral presence after being challenged with the virus, demonstrating the potential of rPICV as an effective vaccine vector.
View Article and Find Full Text PDF

A randomized control trial was performed over a five-year period to assess the efficacy and antibody response induced by autogenous and commercial vaccine formulations against infectious bovine keratoconjunctivitis (IBK). Calves were randomly assigned each year to one of three arms: an autogenous vaccine treatment that included (), , and antigens, a commercial vaccine treatment, or a sham vaccine treatment that consisted only of adjuvant. A total of 1198 calves were enrolled in the study.

View Article and Find Full Text PDF

To investigate the role of PRRSV nonstructural proteins (nsps) in viral RNA replication and transcription, we generated a cDNA clone of PRRSV strain NCV1 carrying the nanoluciferase () gene under the control of the transcription regulatory sequence 6 (TRS6) designated as pNCV1-Nluc. Cells transfected with the pNCV1-Nluc DNA plasmid produced an infectious virus and high levels of luciferase activity. Interestingly, cells transfected with mutant pNCV1-Nluc constructs carrying deletions in nsp7 or nsp9 regions also exhibited luciferase activity, although no infectious virus was produced.

View Article and Find Full Text PDF

Porcine alveolar macrophage (PAM) is one of the primary cellular targets for porcine reproductive and respiratory syndrome virus (PRRSV), but less than 2% of PAMs are infected with the virus during the acute stage of infection. To comparatively analyze the host transcriptional response between PRRSV-infected PAMs and bystander PAMs that remained uninfected but were exposed to the inflammatory milieu of an infected lung, pigs were infected with a PRRSV strain expressing green fluorescent protein (PRRSV-GFP), and GFP (PRRSV infected) and GFP (bystander) cells were sorted for RNA sequencing (RNA-seq). Approximately 4.

View Article and Find Full Text PDF
Article Synopsis
  • This study presents the genome sequence of a newly isolated African swine fever virus known as VNUA-ASFV-05L1/HaNam.
  • The virus was obtained after being passed four times on pulmonary alveolar macrophages.
  • It was isolated during a significant outbreak of ASF in pigs that occurred in a northern province of Vietnam in 2020.
View Article and Find Full Text PDF
Article Synopsis
  • PRRSV is a single-stranded RNA virus that specifically infects pigs and has been a significant issue for the swine industry since its emergence in the late 1980s, leading to notable economic losses.
  • The development of reverse genetics for PRRSV began in 1998, allowing researchers to create infectious cDNA clones that enable targeted genetic modifications of the virus.
  • This review outlines methods for constructing infectious cDNA for PRRSV and discusses ten key applications of these clones, including studying virus biology, virus-host interactions, and developing safer, more effective vaccines.
View Article and Find Full Text PDF

Luciferase-immunoprecipitation system (LIPS), a liquid phase immunoassay, was used to evaluate antibody responses directed against the structural proteins of PRRSV in pigs that were experimentally infected with virulent PRRSV strains. First, the viral N protein was used as a model antigen to validate the assay. The LIPS results were highly comparable to that of the commercial IDEXX PRRS X3 ELISA.

View Article and Find Full Text PDF

Both virulent and live-attenuated porcine reproductive and respiratory syndrome virus (PRRSV) strains can establish persistent infection in lymphoid tissues of pigs. To investigate the mechanisms of PRRSV persistence, we performed a transcriptional analysis of inguinal lymphoid tissue collected from pigs experimentally infected with an attenuated PRRSV strain at 46 days post infection. A total of 6404 differentially expressed genes (DEGs) were detected of which 3960 DEGs were upregulated and 2444 DEGs were downregulated.

View Article and Find Full Text PDF

The substantial genetic diversity exhibited by influenza A viruses of swine (IAV-S) represents the main challenge for the development of a broadly protective vaccine against this important pathogen. The consensus vaccine immunogen has proven an effective vaccinology approach to overcome the extraordinary genetic diversity of RNA viruses. In this project, we sought to determine if a consensus IAV-S hemagglutinin (HA) immunogen would elicit broadly protective immunity in pigs.

View Article and Find Full Text PDF

Zika virus (ZIKV), an emerging arbovirus, has become a major human health concern globally due to its association with congenital abnormalities and neurological diseases. Licensed vaccines or antivirals against ZIKV are currently unavailable. Here, by employing a structure-based approach targeting the ZIKV RNA-dependent RNA polymerase (RdRp), we conducted in silico screening of a library of 100,000 small molecules and tested the top ten lead compounds for their ability to inhibit the virus replication in cell-based in vitro assays.

View Article and Find Full Text PDF

Modified-live virus (MLV) vaccines are widely used to protect pigs against porcine reproductive and respiratory syndrome virus (PRRSV). However, current MLV vaccines do not confer adequate levels of heterologous protection, presumably due to the substantial genetic diversity of PRRSV isolates circulating in the field. To overcome this genetic variation challenge, we recently generated a synthetic PRRSV strain containing a consensus genomic sequence of PRRSV-2.

View Article and Find Full Text PDF

Zika virus (ZIKV), a mosquito-transmitted flavivirus responsible for sporadic outbreaks of mild and febrile illness in Africa and Asia, reemerged in the last decade causing serious human diseases, including microcephaly, congenital malformations, and Guillain-Barré syndrome. Although genomic and phylogenetic analyses suggest that genetic evolution may have led to the enhanced virulence of ZIKV, experimental evidence supporting the role of specific genetic changes in virulence is currently lacking. One sequence motif, VNDT, containing an N-linked glycosylation site in the envelope (E) protein, is polymorphic; it is absent in many of the African isolates but present in all isolates from the recent outbreaks.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionuco2iqp6bi74ku85ikeboo4s5kvfbjrf): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once