Replication of porcine circovirus type 2 (PCV2), an important worldwide swine pathogen, has been demonstrated to be influenced by host genotype. Specifically, a missense DNA polymorphism (SYNGR2 p.Arg63Cys) within the SYNGR2 gene was demonstrated to contribute to variation in PCV2b viral load and subsequent immune response following infection.
View Article and Find Full Text PDFAntibody profile of pigs naturally infected with a virulent African swine fever virus (ASFV) strain under field conditions was studied. Twenty-three serum samples were collected from pigs surviving a natural ASFV infection: 17 samples from finishing pigs (∼7 months old) and 6 samples from sows (between 12 and 36 months old). Additionally, 24 serum samples were collected from ASFV-naïve pigs to serve as negative controls.
View Article and Find Full Text PDFA recent outbreak of particularly virulent disease caused by porcine reproductive and respiratory syndrome virus has occurred in swine herds across the United States. We report here the complete genome sequence of eight viral isolates from four Nebraska herds experiencing an outbreak of severe disease in 2016.
View Article and Find Full Text PDFUnlabelled: Current vaccines do not provide sufficient levels of protection against divergent porcine reproductive and respiratory syndrome virus (PRRSV) strains circulating in the field, mainly due to the substantial variation of the viral genome. We describe here a novel approach to generate a PRRSV vaccine candidate that could confer unprecedented levels of heterologous protection against divergent PRRSV isolates. By using a set of 59 nonredundant, full-genome sequences of type 2 PRRSVs, a consensus genome (designated PRRSV-CON) was generated by aligning these 59 PRRSV full-genome sequences, followed by selecting the most common nucleotide found at each position of the alignment.
View Article and Find Full Text PDFDIVA (differentiating infected from vaccinated animals) vaccines have proven extremely useful for control and eradication of infectious diseases in livestock. We describe here the characterization of a serologic marker epitope, so-called epitope-M201, which can be a potential target for development of a live-attenuated DIVA vaccine against porcine reproductive and respiratory syndrome virus (PRRSV). Epitope-M201 is located at the carboxyl terminus (residues 161-174) of the viral M protein.
View Article and Find Full Text PDFThe non-structural protein 1 (nsp1) of porcine reproductive and respiratory syndrome virus is partly responsible for inhibition of type I interferon (IFN) response by the infected host. By performing alanine-scanning mutagenesis, we have identified amino acid residues in nsp1α and nsp1β (the proteolytic products of nsp1) that when substituted with alanine(s) exhibited significant relief of IFN-suppression. A mutant virus (16-5A, in which residues 16-20 of nsp1β were substituted with alanines) encoding mutant nsp1β recovered from infectious cDNA clone was shown to be attenuated for growth in vitro and induced significantly higher amount of type I IFN transcripts in infected macrophages.
View Article and Find Full Text PDFPassive administration of porcine reproductive and respiratory syndrome virus (PRRSV) neutralizing antibodies (NAbs) can effectively protect pigs against PRRSV infection. However, after PRRSV infection, pigs typically develop a weak and deferred NAb response. One major reason for such a meager NAb response is the phenomenon of glycan shielding involving GP5, a major glycoprotein carrying one major neutralizing epitope.
View Article and Find Full Text PDFThe role of N-glycosylation of the three minor envelope glycoproteins (GP2, GP3, and GP4) of porcine reproductive and respiratory syndrome virus (PRRSV) on infectious virus production, interactions with the receptor CD163, and neutralizing antibody production in infected pigs was examined. By mutation of the glycosylation sites in these proteins, the studies show that glycan addition at N184 of GP2, N42, N50 and N131 of GP3 is necessary for infectious virus production. Although single-site mutants of GP4 led to infectious virus production, mutation of any two sites in GP4 was lethal.
View Article and Find Full Text PDF