Publications by authors named "Hideyuki Yaginuma"

Liquid droplets, formed by intracellular liquid-liquid phase separation (LLPS), are called membraneless organelles. They provide transient enzymatic reaction fields for maintaining cellular homeostasis, although they might transform into aggregates, leading to neurodegenerative diseases. To understand the nature of intracellular droplets, it is crucial to quantify the liquid droplets inside a living cell as well as to elucidate the underlying biological mechanism.

View Article and Find Full Text PDF

Digital assays using microreactors fabricated on solid substrates are useful for carrying out sensitive assays of infectious diseases and other biological tests. However, sealing of the microchambers using fluid oil is difficult for non-experts, and thus hinders the widespread use of digital microreactor assays. Here, we propose the physical isolation of tiny reactors with adhesive tape (PITAT) using simple, commercially available pressure-sensitive adhesive (PSA) tape as a separator of the microreactors.

View Article and Find Full Text PDF

Stimulation emission depletion (STED) microscopy enables ultrastructural imaging of organelle dynamics with a high spatiotemporal resolution in living cells. For the visualization of the mitochondrial membrane dynamics in STED microscopy, rationally designed mitochondrial fluorescent markers with enhanced photostability are required. Herein, we report the development of a superphotostable fluorescent labeling reagent with long fluorescence lifetime, whose design is based on a structurally reinforced naphthophosphole fluorophore that is conjugated with an electron-donating diphenylamino group.

View Article and Find Full Text PDF

Recent advances in quantitative single-cell analysis revealed large diversity in gene expression levels between individual cells, which could affect the physiology and/or fate of each cell. In contrast, for most metabolites, the concentrations were only measureable as ensemble averages of many cells. In living cells, adenosine triphosphate (ATP) is a critically important metabolite that powers many intracellular reactions.

View Article and Find Full Text PDF

Small peptides derived from the CLAVATA3/EMBRYO SURROUNDING REGION-related (CLE) gene family play a key role in various cell-cell communications in land plants. Among them, tracheary element differentiation inhibition factor (TDIF; CLE41/CLE44 peptide) and CLE42 peptide of Arabidopsis have almost identical amino acid sequences and act as inhibitors of tracheary element differentiation. In this study, we report a novel function of TDIF and CLE42.

View Article and Find Full Text PDF