Publications by authors named "Hideyuki Tomizawa"

Replicating the sense of smell presents an ongoing challenge in the development of biomimetic devices. Olfactory receptors exhibit remarkable discriminatory abilities, including the enantioselective detection of individual odorant molecules. Graphene has emerged as a promising material for biomimetic electronic devices due to its unique electrical properties and exceptional sensitivity.

View Article and Find Full Text PDF

An olfactory receptor mimetic peptide-modified graphene field-effect transistor (gFET) is a promising solution to overcome the principal challenge of low specificity graphene-based sensors for volatile organic compound (VOC) sensing. Herein, peptides mimicking a fruit fly olfactory receptor, OR19a, were designed by a high-throughput analysis method that combines a peptide array and gas chromatography for the sensitive and selective gFET detection of the signature citrus VOC, limonene. The peptide probe was bifunctionalized via linkage of a graphene-binding peptide to facilitate one-step self-assembly on the sensor surface.

View Article and Find Full Text PDF

Gas sensing based on graphene field-effect transistors (GFETs) has gained broad interest due to their high sensitivity. Further progress in gas sensing with GFETs requires to detection of various odor molecules for applications in the environmental monitoring, healthcare, food, and cosmetic industries. To develop the ubiquitous odor-sensing system, establishing an artificial sense of smell with electronic devices by mimicking olfactory receptors will be key.

View Article and Find Full Text PDF

High-dose methotrexate (MTX) therapy is used to treat a wide variety of cancers such as leukemia and lymphoma, while the resulting high blood concentration of MTX faces a risk of life-threatening side effects, so it is essential to monitor the concentration carefully. Currently, the MTX concentration is measured using antibody-based kits in a clinical setting; however, the heterogeneity and batch-to-batch variation of antibodies potentially compromise the detection limit. Here, we developed MTX detection systems with chemically synthesizable homogeneous oligonucleotides.

View Article and Find Full Text PDF

Researchers widely apply enzyme inhibition to chemicals such as pesticides, nerve gases, and anti-Alzheimer's drugs. However, application of enzyme inhibition to odorant sensors is less common because the corresponding reaction mechanisms have not yet been clarified in detail. In this study, we propose a new strategy for highly selective detection of odorant molecules by using an inhibitor-specific enzyme.

View Article and Find Full Text PDF

Toll-like receptors (TLRs) play important roles in the innate immune system. In fact, recognition of endogenous immune complexes containing self-nucleic acids as pathogen- or damage-associated molecular patterns contributes to certain autoimmune diseases, and inhibition of these recognition signals is expected to have therapeutic value. We identified dihydropyrrolo[2,3-d]pyrimidines as novel selective TLR9 antagonists with high aqueous solubility.

View Article and Find Full Text PDF

TLR7 agonists modulate Th2 immune responses through mechanisms that have not been fully elucidated. Suppression of IL-5 production from Ag- or phytohemagglutinin-stimulated human PBMCs by the TLR7 antedrug AZ12441970 was mediated via type I IFN-dependent and type I IFN-independent mechanisms through TLR7 activation of plasmacytoid dendritic cells, B cells, and monocytes. The type I IFN-dependent inhibition of T cell-derived IL-5 was mediated by IFN-α acting directly on activated T cells.

View Article and Find Full Text PDF

Triggering innate immune responses through TLRs is expected to be a novel therapeutic strategy for the treatment of allergic diseases. TLR agonists are able to modulate Th2 immune responses through undefined mechanisms. We investigated the mechanism of action of the suppression of Th2 immune responses with a novel antedrug TLR7 agonist.

View Article and Find Full Text PDF

Topical TLR7 agonists such as imiquimod are highly effective for the treatment of dermatological malignancies; however, their efficacy in the treatment of nondermatological tumors has been less successful. We report that oral administration of the novel TLR7-selective small molecule agonist; SM-276001, leads to the induction of an inflammatory cytokine and chemokine milieu and to the activation of a diverse population of immune effector cells including T and B lymphocytes, NK and NKT cells. Oral administration of SM-276001 leads to the induction of IFNα, TNFα and IL-12p40 and a reduction in tumor burden in the Balb/c syngeneic Renca and CT26 models.

View Article and Find Full Text PDF

We investigated the expression of a panel of Toll-like receptors (TLRs) and their functions in human eosinophils. Eosinophils constitutively expressed TLR1, TLR4, TLR7, TLR9, and TLR10 mRNAs (TLR4 greater than TLR1, TLR7, TLR9, and TLR10 greater than TLR6). In contrast, neutrophils expressed a larger variety of TLR mRNAs (TLR1, TLR2, TLR4, TLR6, TLR8 greater than TLR5, TLR9, and TLR10 greater than TLR7).

View Article and Find Full Text PDF

We investigated the chemical modifications of the nitroquinazoline derivative (1) through the replacement of the NH group at the C(4)-position with several N-alkyl groups to increase the lipophilicity at the C(4)-position. Among them, we found that the N-methyl analogue (5a) showed a 2-fold loss in the inhibitory activity toward tumor necrosis factor-alpha (TNF-alpha) production in vitro as compared with the NH analogue (1); however, 5a exhibited an oral inhibitory activity on TNF-alpha production with an ED50 value of 26 mg/kg, whereas 1 did not. Moreover, the oral bioavailability of 5a was higher than that of 1 (1, F=1%; 5a, F=21%), and the calculated ClogP value for 5a was higher than that for 1.

View Article and Find Full Text PDF

In this study, we have investigated the roles of substituents on the terminal phenyl ring at the C(4)-position of the quinazoline core to complete the structure-activity relationships (SARs) of our NF-kappa B activation inhibitors. Among them, compound 12j afforded highly potent inhibitory activity toward NF-kappa B transcriptional activation with IC(50) value of 2 nM, along with an excellent in vivo efficacy by reducing the edema formation seen in carrageenin-induced inflammation of the rat hind paw.

View Article and Find Full Text PDF

Toll-like receptors (TLR) recognize microbial and viral patterns and activate dendritic cells (DC). TLR distribution among human DC subsets is heterogeneous: plasmacytoid DC (PDC) express TLR1, 7 and 9, while other DC types do not express TLR9 but express other TLR. Here, we report that mRNA for most TLR is expressed at similar levels by murine splenic DC sub-types, including PDC, but that TLR3 is preferentially expressed by CD8 alpha(+) DC while TLR5 and TLR7 are selectively absent from the same subset.

View Article and Find Full Text PDF

We synthesized various 6-fluoro-7-(1-piperazino)quinazolines based on the structure of 1 and evaluated their inhibitory activities toward both TNF-alpha production and T cell proliferation responses. Among these compounds, 7a, having the 3,4-(methylenedioxy)phenyl moiety at the C(4)-position of the quinazoline ring, showed both inhibitory activities. Furthermore, the oral treatment with 7a exhibited an anti-inflammatory effect in rats with adjuvant arthritis as well as an inhibitory activity toward LPS-induced TNF-alpha production.

View Article and Find Full Text PDF

We disclose here a new structural class of low-molecular-weight inhibitors of NF-kappa B activation that were designed and synthesized by starting from quinazoline derivative 6a. Structure-activity relationship (SAR) studies based on 6a elucidated the structural requirements essential for the inhibitory activity toward NF-kappa B transcriptional activation, and led to the identification of the 6-amino-4-phenethylaminoquinazoline skeleton as the basic framework. In this series of compounds, 11q, containing the 4-phenoxyphenethyl moiety at the C(4)-position, showed strong inhibitory effects on both NF-kappa B transcriptional activation and TNF-alpha production.

View Article and Find Full Text PDF

We synthesized various 6-nitroquinazolines by modifying the structure of compound 1 and evaluated their inhibitory activities toward both TNF-alpha production and T cell proliferation responses. The presence of the unsubstituted piperazine ring at the C(7)-position was required for both inhibitory activities. In this series of compounds, 5d and 5f, containing the 4-fluorophenyl and 3,4-difluorophenyl moiety, respectively, at the C(4)-position, showed the suppressing effects toward both responses with low cell growth inhibition.

View Article and Find Full Text PDF

Exposure of macrophages to lipopolysaccharide (LPS) induces a hypo-responsive state to a second challenge with LPS that is termed LPS tolerance. LPS tolerance is also induced by pre-exposure to lipopeptides and lipoteichoic acid, which trigger Toll-like receptor (TLR) 2-mediated signaling. LPS signaling involves at least two pathways: a MyD88-dependent cascade that is essential for production of inflammatory cytokines and a MyD88-independent cascade that mediates the expression of IFN-inducible genes.

View Article and Find Full Text PDF

Dendritic cells (DCs) play a crucial role in the immune responses against infections by sensing microbial invasion through toll-like receptors (TLRs). In humans, two distinct DC subsets, CD11c(-) plasmacytoid DCs (PDCs) and CD11c(+) myeloid DCs (MDCs), have been identified and can respond to different TLR ligands, depending on the differential expression of cognate TLRs. In this study, we have examined the effect of TLR-7 ligands on human DC subsets.

View Article and Find Full Text PDF

The imidazoquinoline compounds imiquimod and R-848 are low-molecular-weight immune response modifiers that can induce the synthesis of interferon-alpha and other cytokines in a variety of cell types. These compounds have potent anti-viral and anti-tumor properties; however, the mechanisms by which they exert their anti-viral activities remain unclear. Here we show that the imidazoquinolines activate immune cells via the Toll-like receptor 7 (TLR7)-MyD88-dependent signaling pathway.

View Article and Find Full Text PDF