Service robots that coexist with humans in everyday life have become more common, and they have provided customer service in physical shops around the world in recent years. However, their potential in effective sales strategies has not been fully realized due to their low social presence. This study aims to clarify what kind of robot behavior enhances the social presence of service robots and how it affects human-robot interaction and purchasing behavior.
View Article and Find Full Text PDFmRNA medicines can be used to express therapeutic proteins, but the production of such proteins in non-target cells has a risk of adverse effects. To accurately distinguish between therapeutic target and nontarget cells, it is desirable to utilize multiple proteins expressed in each cell as indicators. To achieve such multi-input translational regulation of mRNA medicines, in this study, we engineered Rhodothermus marinus (Rma) DnaB intein to develop "caged Rma DnaB intein" that enables conditional reconstitution of full-length translational regulator protein from split fragments.
View Article and Find Full Text PDFConventional techniques for sharing paper documents in teleconferencing tend to introduce two inconsistencies: 1) media inconsistency: a paper document is converted into a digital image on the remote site; 2) space inconsistency: a workspace deliberately inverts the partner's handwriting to make a document easy to read. In this paper, we present a novel system that eliminates these inconsistencies. The media and space inconsistencies are resolved by reproducing a real paper document on a remote site and allowing a user to handover the paper document to a remote partner across a videoconferencing display.
View Article and Find Full Text PDFIn recent years, virtual idols have garnered considerable attention because they can perform activities similar to real idols. However, as they are fictitious idols with nonphysical presence, they cannot perform physical interactions such as handshake. Combining a robotic hand with a display showing virtual idols is the one of the methods to solve this problem.
View Article and Find Full Text PDFPrecipitation of oppositely charged entities is a common phenomenon in nature and laboratories. Precipitation and crystallization of oppositely charged ions are well-studied and understood processes in chemistry. However, much less is known about the precipitation properties of oppositely charged nanoparticles.
View Article and Find Full Text PDFThe growing significance of messenger RNA (mRNA) therapeutics in diverse medical applications, such as cancer, infectious diseases, and genetic disorders, highlighted the need for efficient and safe delivery systems. Lipid nanoparticles (LNPs) have shown great promise for mRNA delivery, but challenges such as toxicity and immunogenicity still remain to be addressed. In this study, we aimed to compare the performance of polyplex nanomicelles, our original cationic polymer-based carrier, and LNPs in various aspects, including delivery efficiency, organ toxicity, muscle damage, immune reaction, and pain.
View Article and Find Full Text PDFAll-inorganic cesium lead halide perovskite quantum dots (QDs) have several potential applications, owing to their unique optical and electronic properties. However, patterning perovskite QDs using conventional methods is difficult because of the ionic nature of QDs. Here, we demonstrate a unique approach, in which perovskite QDs are patterned in polymer films through the photocuring of monomers under patterned light illumination.
View Article and Find Full Text PDFFor the selective elimination of deleterious cells (e.g., cancer cells and virus-infected cells), the use of a cytotoxic gene is a promising approach.
View Article and Find Full Text PDFFunctionalized nanoparticles (NPs) are widely used in targeted drug delivery and biomedical imaging due to their penetration into living cells. The outer coating of most cells is a sugar-rich layer of the cellular glycocalyx, presumably playing an important part in any uptake processes. However, the exact role of the cellular glycocalyx in NP uptake is still uncovered.
View Article and Find Full Text PDFMessenger RNA (mRNA) is an emerging drug modality for protein replacement therapy. As mRNA efficiently provides protein expression in post-mitotic cells without the risk of insertional mutagenesis, direct delivery of mRNA can be applied, not only as an alternative to gene therapy, but also for various common diseases such as osteoarthritis (OA). In this study, using an mRNA-encoding interleukin-1 receptor antagonist (IL-1Ra), we attempted anti-inflammatory therapy in a rat model of the temporomandibular joint (TMJ) OA, which causes long-lasting joint pain with chronic inflammation.
View Article and Find Full Text PDFHere, we describe a protocol for the translational regulation of transfected messenger RNAs (mRNAs) using light in mammalian cells. We detail the steps for photocaged ligand synthesis, template DNA preparation, and mRNA synthesis. We describe steps for mRNA transfection, treatment of cells with a photocaged ligand followed by light irradiation, and analysis of the transgene expression.
View Article and Find Full Text PDFOne of the main purposes of smart and multifunctional coatings is to have the versatility to be applied in a wide range of applications. However, the functions of smart materials are often highly limited. In particular, the stimuli-responsive lateral expansion of coatings based on 2D materials has not been reported before.
View Article and Find Full Text PDFSynthetic mRNA is attracting much attention as a new drug modality. Now, there is great interest in the next applications of mRNA medicines, especially for therapeutic purposes of various diseases. Not only in vivo applicable mRNA medicines, there are many researches using ex vivo or in vitro mRNA transfection, some of which are already used in the preclinical or clinical settings.
View Article and Find Full Text PDFSynthetic mRNA (mRNA) enables transgene expression without the necessity of nuclear import and the risk of insertional mutagenesis, which makes it an attractive tool for medical applications such as vaccination and protein replacement therapy. For further improvement of mRNA therapeutics, cell-selective translation is desirable, because transgene expression in nontarget cells sometimes causes adverse effects. In this study, we developed an intracellular protein-responsive translational regulation system based on Caliciviral VPg-based translational activator (CaVT) combined with inteins and target protein-binding nanobodies.
View Article and Find Full Text PDFPatterning nanocrystals in polymer films is essential for the widespread use of nanocrystals in various fields from optics to electronics; therefore, the development of patterning methods for nanocrystals is an important task. Here, we report a unique approach for patterning silver nanowires (AgNWs) using a thermodynamic driving force induced by transient concentration gradients in reaction mixtures. The procedure starts with the preparation of a photocurable monomer solution containing homogeneously dispersed AgNWs.
View Article and Find Full Text PDFLife (Basel)
November 2021
Synthetic mRNAs, which are produced by in vitro transcription, have been recently attracting attention because they can express any transgenes without the risk of insertional mutagenesis. Although current synthetic mRNA medicine is not designed for spatiotemporal or cell-selective regulation, many preclinical studies have developed the systems for the translational regulation of synthetic mRNAs. Such translational regulation systems will cope with high efficacy and low adverse effects by producing the appropriate amount of therapeutic proteins, depending on the context.
View Article and Find Full Text PDFPickering emulsions comprising liquid droplets stabilized by solid microparticles have gained much attention in the field of cosmetics, inks, and drug delivery systems. To ensure that microparticles in Pickering emulsions are localized at the surface of liquid droplets, ultrasonic spectroscopy analysis combined with scattering function theory was conducted in this study. Two specific cases were investigated: (1) silica particles and liquid droplets independently dispersed in liquid and (2) silica particles effectively localized at the surface of the droplets.
View Article and Find Full Text PDFPluripotent stem cells have the potential to differentiate into various cell types that can be used for basic biological studies, drug discovery, and regenerative medicine. To obtain reliable results using the differentiated cells, the contamination of nontarget cells should be avoided. microRNAs (miRNAs) can serve as indicators to distinguish target and nontarget cells, because the activities of miRNAs are different among cell types.
View Article and Find Full Text PDFUltrasonic scattering method is a promising technique to evaluate the particle size distribution and/or the elastic properties of particle suspended in liquid. Among the wide variety of scattering theories, the ECAH theory proposed by Epstein-Carhart-Allegra-Hawley is one of the most relevant acoustic scattering theories to reproduce the ultrasonic spectroscopy data for the particle suspensions. However, the original theory assumes that the shear contribution is provided for either elastic solid or viscous liquid.
View Article and Find Full Text PDFThe beat in physical systems is a transparent and well-understood phenomenon. It may occur in forced oscillatory systems and as a result of the interference of two waves of slightly different frequencies. However, in chemical systems, the realization of the latter type of the beat phenomenon has been lacking.
View Article and Find Full Text PDFRobotic salespeople are often ignored by people due to their weak social presence, and thus have difficulty facilitating sales autonomously. However, for robots that are remotely controlled by humans, there is a need for experienced and trained operators. In this paper, we suggest crowdsourcing to allow general users on the internet to operate a robot remotely and facilitate customers' purchasing activities while flexibly responding to various situations through a user interface.
View Article and Find Full Text PDFThe amount of charge of a material has always been regarded as a property (or state) of materials and can be measured precisely and specifically. This study describes for the first time a fundamental physical-chemical phenomenon in which the amount of charge of a material is actually a variable-it depends on the shape of the material. Materials are shown to have continuously variable and reversible ranges of charge states by changing their shapes.
View Article and Find Full Text PDF