Imaging plates (IPs) are valuable tools for measuring the intensity of ionizing radiation such as x-rays, electrons, and ions. In this work, we measured the sensitivity of IPs to carbon ions in the unexplored energy region of 0.7-10 keV.
View Article and Find Full Text PDFWe demonstrate in-line phase-contrast imaging of nanothickness foils by using a relatively large, polychromatic, debris-free femtosecond-laser-driven cluster-based plasma soft x-ray source, and a high-resolution, large dynamic range LiF crystal detector. The spatial coherence length of radiation in our setup reached a value of 5 microm on the sample plane, which is enough to observe phase-contrast enhancement in the images registered by the detector placed only a few hundred micrometers behind the object. We have developed a tabletop soft x-ray emission source, which emits radiation within a 4pi sr solid angle, and which allows one to obtain contact and propagation-based phase-contrast imaging of nanostructures with 700 nm spatial resolutions.
View Article and Find Full Text PDFFor multiple laser pulse experiments, it is necessary to split a laser pulse. In order to split a short laser pulse without stretching the pulse width, the laser pulse should not pass through thick materials. For this reason, a pellicle beam splitter (BS) and/or a mirror with a hole are required as a BS for the short laser pulse.
View Article and Find Full Text PDFWe use a one-shot measurement technique to study effects of laser prepulses on the electron laser wakefield acceleration driven by relativistically intense laser pulses (lambda=790 nm, 11 TW, 37 fs) in dense helium gas jets. A quasimonoenergetic electron bunch with an energy peak approximately 11.5 MeV[DeltaE/E approximately 10% (FWHM)] and with a narrow-cone angle (0.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
March 2003
Spatial and energy distributions of energetic electrons produced by an ultrashort, intense laser pulse with a short focal length optical system (Ti:sapphire, 12 TW, 50 fs, lambda=790 nm, f/3.5) in a He gas jet are measured. They are shown to depend strongly on the contrast ratio and shape of the laser prepulse.
View Article and Find Full Text PDF