Publications by authors named "Hideyuki Kotaki"

Imaging plates (IPs) are valuable tools for measuring the intensity of ionizing radiation such as x-rays, electrons, and ions. In this work, we measured the sensitivity of IPs to carbon ions in the unexplored energy region of 0.7-10 keV.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates a femtosecond laser-driven cluster-based plasma and analyzes the nonlinear effects related to spectral lines of Ar XVII.
  • A key finding is the generation of the laser's second harmonic, with an efficiency of 2% when using a short, intense laser pulse.
  • The results from spectral line shape analysis align closely with 2D PIC simulations, confirming the thresholds for second harmonic generation agreed across both methods.
View Article and Find Full Text PDF

We demonstrate in-line phase-contrast imaging of nanothickness foils by using a relatively large, polychromatic, debris-free femtosecond-laser-driven cluster-based plasma soft x-ray source, and a high-resolution, large dynamic range LiF crystal detector. The spatial coherence length of radiation in our setup reached a value of 5 microm on the sample plane, which is enough to observe phase-contrast enhancement in the images registered by the detector placed only a few hundred micrometers behind the object. We have developed a tabletop soft x-ray emission source, which emits radiation within a 4pi sr solid angle, and which allows one to obtain contact and propagation-based phase-contrast imaging of nanostructures with 700 nm spatial resolutions.

View Article and Find Full Text PDF

For multiple laser pulse experiments, it is necessary to split a laser pulse. In order to split a short laser pulse without stretching the pulse width, the laser pulse should not pass through thick materials. For this reason, a pellicle beam splitter (BS) and/or a mirror with a hole are required as a BS for the short laser pulse.

View Article and Find Full Text PDF

We use a one-shot measurement technique to study effects of laser prepulses on the electron laser wakefield acceleration driven by relativistically intense laser pulses (lambda=790 nm, 11 TW, 37 fs) in dense helium gas jets. A quasimonoenergetic electron bunch with an energy peak approximately 11.5 MeV[DeltaE/E approximately 10% (FWHM)] and with a narrow-cone angle (0.

View Article and Find Full Text PDF

Spatial and energy distributions of energetic electrons produced by an ultrashort, intense laser pulse with a short focal length optical system (Ti:sapphire, 12 TW, 50 fs, lambda=790 nm, f/3.5) in a He gas jet are measured. They are shown to depend strongly on the contrast ratio and shape of the laser prepulse.

View Article and Find Full Text PDF