Publications by authors named "Hideyuki Kishino"

To elucidate the mechanism of acyl chain remodeling at the sn-1 position of phosphatidylcholine (PC), we investigated acyl chain introduction using a newly synthesized 1-hydroxy-2-hexadecyl-sn-glycero-3-phosphocholine (HHPC) in Saccharomyces cerevisiae. HHPC is incorporated into yeast cells and converted to a PC species containing acyl residues of 16 or 18 carbons. The efficiency of palmitoleic acid introduction to HHPCin vitro is lower in the reaction with the extract from the deletion mutant of ALE1, which encodes a membrane-bound O-acyltransferase, than in that with extracts from the wild-type strain.

View Article and Find Full Text PDF

A yeast strain, in which endogenous phosphatidylcholine (PC) synthesis is controllable, was constructed by the replacement of the promoter of PCT1, encoding CTP:phosphocholine cytidylyltransferase, with GAL1 promoter in a double deletion mutant of PEM1 and PEM2, encoding phosphatidylethanolamine methyltransferase and phospholipid methyltransferase, respectively. This mutant did not grow in the glucose-containing medium, but the addition of dioctanoyl-phosphatidylcholine (diC8PC) supported its growth. Analyses of the metabolism of (13)C-labeled diC8PC ((methyl-(13)C)3-diC8PC) in this strain using electrospray ionization tandem mass spectrometry revealed that it was converted to PC species containing acyl residues of 16 or 18 carbons at both sn-1 and sn-2 positions.

View Article and Find Full Text PDF