Publications by authors named "Hidetoshi Taniguchi"

Objective: Infant hypersensitivity affects daily challenges and parental stress. Although the crucial role of tactile sensation in infants' brain function has been highlighted, hypersensitive infants and their families lack support. Electroencephalography may be useful for understanding hypersensitivity traits.

View Article and Find Full Text PDF

International air transport over long distances necessitates considerable effort. It is even more challenging when the patient is a neonate and has a congenital disease. We hereby report a case of an international aircraft transport of a neonate from Tbilisi, Georgia to Osaka, Japan.

View Article and Find Full Text PDF

Astrocytes exert adverse effects on the brains of individuals with Down syndrome (DS). Although a neurogenic-to-gliogenic shift in the fate-specification step has been reported, the mechanisms and key regulators underlying the accelerated proliferation of astrocyte precursor cells (APCs) in DS remain elusive. Here, we established a human isogenic cell line panel based on DS-specific induced pluripotent stem cells, the XIST-mediated transcriptional silencing system in trisomic chromosome 21, and genome/chromosome-editing technologies to eliminate phenotypic fluctuations caused by genetic variation.

View Article and Find Full Text PDF

Individuals with Down syndrome (DS) commonly show unique pathological phenotypes throughout their life span. Besides the specific effects of dosage-sensitive genes on chromosome 21, recent studies have demonstrated that the gain of a chromosome exerts an adverse impact on cell physiology, regardless of the karyotype. Although dysregulated transcription and perturbed protein homeostasis are observed in common in human fibroblasts with trisomy 21, 18, and 13, whether and how this aneuploidy-associated stress acts on other cell lineages and affects the pathophysiology are unknown.

View Article and Find Full Text PDF

Background: Variants in the type IV collagen gene () cause early-onset cerebrovascular diseases. Most individuals are diagnosed postnatally, and the prenatal features of individuals with variants remain unclear.

Methods: We examined in 218 individuals with suspected /2-related brain defects.

View Article and Find Full Text PDF

The rare blood phenotype D-- is characterized by the absence of RhCcEe antigens. Women with this blood type who have experienced previous pregnancies may produce anti-Rh17 antibodies, which may cause severe fetal hemolytic anemia or fetal death in subsequent pregnancies. We report successful management of a pregnancy associated with fetal hemolytic disease owing to high titers of anti-Rh17 (1:4096) in a woman with a history of a pregnancy with fetal hydrops and intrauterine fetal death.

View Article and Find Full Text PDF

Chromosome abnormalities induces profound alterations in gene expression, leading to various disease phenotypes. Recent studies on yeast and mammalian cells have demonstrated that aneuploidy exerts detrimental effects on organismal growth and development, regardless of the karyotype, suggesting that aneuploidy-associated stress plays an important role in disease pathogenesis. However, whether and how this effect alters cellular homeostasis and long-term features of human disease are not fully understood.

View Article and Find Full Text PDF

Eukaryotic genomes are organised into complex higher-order structures within the nucleus, and the three-dimensional arrangement of chromosomes is functionally important for global gene regulation. The existence of supernumerary chromosome 21 in Down syndrome may perturb the nuclear architecture at different levels, which is normally optimised to maintain the physiological balance of gene expression. However, it has not been clearly elucidated whether and how aberrant configuration of chromosomes affects gene activities.

View Article and Find Full Text PDF

Chromosomal aneuploidy and specific gene mutations are recognized early hallmarks of many oncogenic processes. However, the net effect of these abnormalities has generally not been explored. We focused on transient myeloproliferative disorder (TMD) in Down syndrome, which is characteristically associated with somatic mutations in GATA1.

View Article and Find Full Text PDF

Hypoxic-ischemic encephalopathy (HIE) in neonates is a leading cause of neurological impairment. Significant progress has been achieved investigating the pathologic contributions of excitotoxicity, oxidative stress, and neuroinflammation to cerebral injury in HIE. Less extensively investigated has been the contribution of vascular dysfunction, and whether modulation of cerebral perfusion may improve HIE outcome.

View Article and Find Full Text PDF

Neonatal hypoxic-ischemic encephalopathy (HIE) is a leading cause of severe and permanent neurologic disability after birth. The inducible cyclooxygenase COX-2, which along with COX-1 catalyzes the first committed step in prostaglandin (PG) synthesis, elicits significant brain injury in models of cerebral ischemia; however its downstream PG receptor pathways trigger both toxic and paradoxically protective effects. Here, we investigated the function of PGE(2) E-prostanoid (EP) receptors in the acute outcome of hypoxic-ischemic (HI) injury in the neonatal rat.

View Article and Find Full Text PDF

Duchenne muscular dystrophy is a fatal muscle wasting disease that is characterized by a deficiency in the protein dystrophin. Previously, we reported that the expression of hematopoietic prostaglandin D synthase (HPGDS) appeared in necrotic muscle fibers from patients with either Duchenne muscular dystrophy or polymyositis. HPGDS is responsible for the production of the inflammatory mediator, prostaglandin D(2).

View Article and Find Full Text PDF

Hypoxic-Ischemic Encephalopathy (HIE) is the consequence of systemic asphyxia occurring at birth. Twenty five percent of neonates with HIE develop severe and permanent neuropsychological sequelae, including mental retardation, cerebral palsy, and epilepsy. The outcomes of HIE are devastating and permanent, making it critical to identify and develop therapeutic strategies to reduce brain injury in newborns with HIE.

View Article and Find Full Text PDF

Lipocalin-type prostaglandin (PG) D synthase (L-PGDS) is up-regulated in oligodendrocytes (OLs) in mouse models for genetic neurological disorders including globoid cell leukodystrophy (twitcher) and GM1 and GM2 gangliosidoses and in the brain of patients with multiple sclerosis. Since L-PGDS-deficient twitcher mice undergo extensive neuronal death, we concluded that L-PGDS functions protectively against neuronal degeneration. In this study, we investigated whether L-PGDS is also up-regulated in acute and massive brain injury resulting from neonatal hypoxic-ischemic encephalopathy (HIE).

View Article and Find Full Text PDF

Prostaglandin D2 (PGD) is synthesized by hematopoietic PGD synthase (HPGDS) or lipocalin-type PGDS (L-PGDS), depending on the organ in which it is produced, and binds specifically to either DP1 or DP2 receptors. We investigated the role of PGD2 in the pathogenesis of hypoxic-ischemic encephalopathy (HIE) in neonatal mice at postnatal day 7. In wild-type mice, hypoxia-ischemia increased PGD2 production in the brain up to 90-fold compared with the level in sham-operated brains at 10 min after cessation of hypoxia.

View Article and Find Full Text PDF

Human cytomegalovirus (CMV) is a leading congenital infectious agent in developed countries. In the past, the incidence of congenital infection has been rather low in Japan because a high seroprevalence of CMV present in young women. However, this seroprevalence has been decreasing in recent years, so that the incidence of congenital CMV infection in Japanese neonates may increase and approach the level seen in other developed countries.

View Article and Find Full Text PDF

Prostaglandin (PG) D2 is well known as a mediator of inflammation. Hematopoietic PGD synthase (HPGDS) is responsible for the production of PGD2 involved in inflammatory responses. Microglial activation and astrogliosis are commonly observed during neuroinflammation, including that which occurs during demyelination.

View Article and Find Full Text PDF