Publications by authors named "Hidetaka Takato"

This paper describes the way to fabricate two-terminal tandem solar cells using Si heterojunction (SHJ) bottom cells and GaAs-relevant III-V top cells by "smart stack", an approach enabling the series connection of dissimilar solar cells through Pd nanoparticle (NP) arrays. It was suggested that placing the Pd NP arrays directly on typical SHJ cells results in poor tandem performance because of the insufficient electrical contacts and/or deteriorated passivation quality of the SHJ cells. Therefore, hydrogenated nanocrystalline Si (nc-Si:H) layers were introduced between Pd NPs and SHJ cells to improve the electrical contacts and preserve the passivation quality.

View Article and Find Full Text PDF

Silicon based multi-junction solar cells are a promising approach for achieving high power conversion efficiencies using relatively low-cost substrates. In recent years, 2-terminal triple-junction solar cells using GaInP/GaAs as top cells and Si bottom cell have achieved excellent efficiencies. Epitaxial growth or wafer bonding has been used for the integration of the cells.

View Article and Find Full Text PDF

One of the potential applications of metal nanostructures is light trapping in solar cells, where unique optical properties of nanosized metals, commonly known as plasmonic effects, play an important role. Research in this field has, however, been impeded owing to the difficulty of fabricating devices containing the desired functional metal nanostructures. In order to provide a viable strategy to this issue, we herein show a transfer printing-based approach that allows the quick and low-cost integration of designed metal nanostructures with a variety of device architectures, including solar cells.

View Article and Find Full Text PDF