Messenger RNA vaccines based on lipid nanoparticles (mRNA-LNPs) are promising vaccine modalities. However, mRNA-LNP vaccines frequently cause adverse reactions such as swelling and fever in humans, partly due to the inflammatory nature of LNP. Modification of the ionizable lipids used in LNPs is one approach to avoid these adverse reactions.
View Article and Find Full Text PDFLipid nanoparticle-encapsulated mRNA (mRNA-LNP) vaccines have been approved for use to combat coronavirus disease 2019 (COVID-19). The mRNA-LNPs contain PEG-conjugated lipids. Clinical studies have reported that mRNA-LNPs induce the production of anti-PEG antibodies, but the anti-PEG antibodies do not affect the production of neutralizing antibodies.
View Article and Find Full Text PDFThis study aimed to assess the applicability of solution-state H NMR for molecular-level characterization of siRNA-loaded lipid nanoparticles (LNP). Dilinoleylmethyl-4-dimethylaminobutyrate (DLin-MC3-DMA, MC3) was used as an ionizable lipid, and siRNA-loaded LNPs were prepared by pre-mixing and post-mixing methods. The pre-mixing method involved mixing an acidic solution containing siRNA with an ethanolic lipid solution using a microfluidic mixer.
View Article and Find Full Text PDFVascular calcification, which is a major complication of diabetes mellitus, is an independent risk factor for cardiovascular disease. Osteogenic differentiation of vascular smooth muscle cells (VSMCs) is one of the key mechanisms underlying vascular calcification. Emerging evidence suggests that macrophage-derived extracellular vesicles (EVs) may be involved in calcification within atherosclerotic plaques in patients with diabetes mellitus.
View Article and Find Full Text PDFDiesel exhaust particles (DEPs) are very small (typically < 0.2 μm) fragments that have become major air pollutants. DEPs are comprised of a carbonaceous core surrounded by organic compounds such as polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs.
View Article and Find Full Text PDFRNA vaccines based on Lipid nanoparticles (LNP) were put into practical use within only one year after the global outbreak of the coronavirus disease 2019 (COVID-19). This success of RNA vaccine highlights the utility of an mRNA delivery system as a vaccination strategy. Potent immunostimulatory activity of LNPs (i.
View Article and Find Full Text PDFRNA vaccines are applicable to the treatment of various infectious diseases via the inducement of robust immune responses against target antigens by expressing antigen proteins in the human body. The delivery of messenger RNA by lipid nanoparticles (LNPs) has become a versatile drug delivery system used in the administration of RNA vaccines. LNPs are widely considered to possess adjuvant activity that induces a strong immune response.
View Article and Find Full Text PDFBecause of its efficient and robust gene transfer capability, messenger RNA (mRNA) has become a promising tool in various research fields. The lipid nanoparticle (LNP) is considered to be a fundamental technology for an mRNA delivery system and has been used extensively for the development of RNA vaccines against SARS-CoV-2. We recently developed ssPalm, an environmentally responsive lipid-like material, as a component of LNP for mRNA delivery.
View Article and Find Full Text PDFIntranasal vaccines are anticipated to be powerful tools for combating many infectious diseases, including SARS-CoV-2, because they induce not only systemic immunity but also mucosal immunity at the site of initial infection. However, they are generally inefficient in inducing an antigen-specific immune response without adjuvants. Here, we developed an adjuvant-free intranasal vaccine platform that utilizes the preexisting immunity induced by previous infection or vaccination to enhance vaccine effectiveness.
View Article and Find Full Text PDFRNA vaccines based on lipid nanoparticles (LNPs) with transcribed mRNA (IVT-mRNA) encapsulated are now a currently successful but still evolving modality of vaccines. One of the advantages of RNA vaccines is their ability to induce CD8 T-cell-mediated cellular immunity that is indispensable for excluding pathogen-infected cells or cancer cells from the body. In this study, we report on the development of LNPs with an enhanced capability for inducing cellular immunity by using an ionizable lipid with a vitamin E scaffold.
View Article and Find Full Text PDFThe growing significance of messenger RNA (mRNA) therapeutics in diverse medical applications, such as cancer, infectious diseases, and genetic disorders, highlighted the need for efficient and safe delivery systems. Lipid nanoparticles (LNPs) have shown great promise for mRNA delivery, but challenges such as toxicity and immunogenicity still remain to be addressed. In this study, we aimed to compare the performance of polyplex nanomicelles, our original cationic polymer-based carrier, and LNPs in various aspects, including delivery efficiency, organ toxicity, muscle damage, immune reaction, and pain.
View Article and Find Full Text PDFMultiple sclerosis is a disease caused by autoantigen-responsive immune cells that disrupt the myelin in the central nervous system (CNS). Although immunosuppressive drugs are used to suppress symptoms, no definitive therapy exists. As in the experimental autoimmune encephalitis (EAE) model of multiple sclerosis, a partial sequence of the myelin oligodendrocyte glycoprotein (MOG) was identified as a causative autoantigen.
View Article and Find Full Text PDFKnockout mice are useful tools that can provide information about the normal function of genes, including their biochemical, developmental, and physiological roles. One problem associated with the generation of knockout mice is that the loss of some genes of interest produces a lethal phenotype. Therefore, the use of conditioned knockout mice, in which genes are disrupted in specific organs, is essential for the elucidation of disease pathogenesis and the verification of drug targets.
View Article and Find Full Text PDFSmall extracellular vesicles (sEVs) are small, cell-derived particles with sizes of approximately 100 nm. Since these particles include cargos such as host cell-derived proteins, messenger RNAs, and micro RNAs, they serve as mediators of cell-cell communication. While the analysis of the pharmacokinetic of sEVs after the intravenous injection have been reported, the lymphatic transport of sEVs remains unclear.
View Article and Find Full Text PDFThe lipid nanoparticle (LNP) is one of the promising nanotechnologies for the delivery of RNA molecules, such as small interfering RNA (siRNA) and messenger RNA (mRNA). A series of LNPs that contain an mRNA encoding the antigen protein of SARS-CoV-2 were already approved as RNA vaccines against this infectious disease. Since LNP formulations are generally metastable, their physicochemical properties are expected to shift toward a more stable state during the long-time storage of suspensions.
View Article and Find Full Text PDFBackground: Retiform hemangioendothelioma (RH) is a rare, intermediate-grade vascular tumor that often arises in the trunk and extremities. The clinical and radiological features of RH remain largely unknown.
Case Presentation: A male patient in his 70s presented with shortness of breath on exertion, and computed tomography incidentally revealed a tumor in his right breast.
The reactivation of anticancer immunity is a fundamental principle in cancer immunotherapy as evidenced by the use of immune checkpoint inhibitors (ICIs). While treatment with the ICIs is shown to have remarkable and durable therapeutic effects in the responders, the low objective response rate (<40%) continues to be a major problem. Since myeloid-derived suppressor cells (MDSCs), heterogenous cells with strong immunosuppressive activity that originate in the hematopoietic system, suppress the anticancer immunity via parallel immune checkpoint-dependent and independent pathways, these cells are potential targets for improving the efficacy of cancer immunotherapy.
View Article and Find Full Text PDFBackground: With the increased use of immune checkpoint inhibitors (ICIs), side effects and toxicity are a great concern. Anaphylaxis has been identified as a potential adverse event induced by ICIs. Anaphylaxis is a life-threatening medical emergency.
View Article and Find Full Text PDFLipid nanoparticles (LNPs) are one of the most successful technologies in messenger RNA (mRNA) delivery. While the liver is the most frequent target for LNP delivery of mRNA, technologies for delivering mRNA molecules to extrahepatic tissues are also important. Herein, it is reported on the development of an LNP that targets secondary lymphoid tissues.
View Article and Find Full Text PDFSystemically administered lipid nanoparticles (LNPs) are complexed with Apolipoprotein E (ApoE) in the bloodstream, and the complex is subsequently largely taken up by hepatocytes. Based on a previous report showing that, like blood, lymph fluid also contains ApoE, and that LECs, in turn, expresses a low density-lipoprotein receptor (LDLR), which is the receptor responsible for the ApoE-bound LNP, we hypothesized that subcutaneously administered LNPs would be taken up by LECs via an ApoE-LDLR pathway. Our in vitro studies using immortal LECs that we established in a previous study showed that LEC indeed took up LNPs in an ApoE-dependent manner.
View Article and Find Full Text PDFChemotherapy for peritoneal dissemination is poorly effective owing to limited drug transfer from the blood to the intraperitoneal (i.p.) compartment after intravenous (i.
View Article and Find Full Text PDFDrug Metab Pharmacokinet
December 2022
Benzbromarone, a uricosuric drug, has the potential to cause serious hepatotoxicity. Several studies have shown the formation of reactive metabolites of benzbromarone and their association with hepatotoxicity in mice. However, it is unknown whether those reactive metabolites are generated in humans in vivo.
View Article and Find Full Text PDF