Orbital torque (OT) in magnetic heterostructures has been actively discussed in terms of its actual existence and usefulness in comparison to the spin-orbit torque (SOT) that shows promise for next-generation magnetoresistive random access memories. The objectives of this study are 2-fold: (i) making an apples-to-apples comparison in two representative stacks where OT and SOT are expected to dominate and (ii) examining the potential emergence of OT in archetypal SOT stacks. Cr/CoFeB/MgO and W/CoFeB/MgO are chosen as the OT- and SOT-dominant systems, respectively.
View Article and Find Full Text PDFBlock copolymers are recognized as a valuable platform for creating nanostructured materials. Morphologies formed by block copolymer self-assembly can be transferred into a wide range of inorganic materials, enabling applications including energy storage and metamaterials. However, imaging of the underlying, often complex, nanostructures in large volumes has remained a challenge, limiting progress in materials development.
View Article and Find Full Text PDFExpanding upon the burgeoning discipline of magnonics, this research elucidates the intricate dynamics of spin waves (SWs) within three-dimensional nanoenvironments. It marks a shift from traditionally used planar systems to exploration of magnetization configurations and the resulting dynamics within 3D nanostructures. This study deploys micromagnetic simulations alongside ferromagnetic resonance measurements to scrutinize magnetic gyroids, periodic chiral configurations composed of chiral triple junctions with a period in nanoscale.
View Article and Find Full Text PDFExtending Moore's law by augmenting complementary-metal-oxide semiconductor (CMOS) transistors with emerging nanotechnologies (X) has become increasingly important. One important class of problems involve sampling-based Monte Carlo algorithms used in probabilistic machine learning, optimization, and quantum simulation. Here, we combine stochastic magnetic tunnel junction (sMTJ)-based probabilistic bits (p-bits) with Field Programmable Gate Arrays (FPGA) to create an energy-efficient CMOS + X (X = sMTJ) prototype.
View Article and Find Full Text PDFNon-collinear antiferromagnets are an emerging family of spintronic materials because they not only possess the general advantages of antiferromagnets but also enable more advanced functionalities. Recently, in an intriguing non-collinear antiferromagnet MnSn, where the octupole moment is defined as the collective magnetic order parameter, spin-orbit torque (SOT) switching has been achieved in seemingly the same protocol as in ferromagnets. Nevertheless, it is fundamentally important to explore the unknown octupole moment dynamics and contrast it with the magnetization vector of ferromagnets.
View Article and Find Full Text PDFAntiferromagnets have attracted extensive interest as a material platform in spintronics. So far, antiferromagnet-enabled spin-orbitronics, spin-transfer electronics and spin caloritronics have formed the bases of antiferromagnetic spintronics. Spin transport and manipulation based on coherent antiferromagnetic dynamics have recently emerged, pushing the developing field of antiferromagnetic spintronics towards a new stage distinguished by the features of spin coherence.
View Article and Find Full Text PDFIntroduction Incorporation of a plant-based diet was effective in both induction and short-term relapse prevention in Crohn's disease. Ten-year long-term relapse-free rates in Crohn's disease are around 10% to 23%. Objective We investigated whether infliximab and plant-based diet as first-line therapy enhance the long-term relapse-free rate in patients with Crohn's disease.
View Article and Find Full Text PDFModulation of the energy landscape by external perturbations governs various thermally-activated phenomena, described by the Arrhenius law. Thermal fluctuation of nanoscale magnetic tunnel junctions with spin-transfer torque (STT) shows promise for unconventional computing, whereas its rigorous representation, based on the Néel-Arrhenius law, has been controversial. In particular, the exponents for thermally-activated switching rate therein, have been inaccessible with conventional thermally-stable nanomagnets with decade-long retention time.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2022
SignificanceAtomic defects in solid-state materials are promising candidates as quantum bits, or qubits. New materials are actively being investigated as hosts for new defect qubits; however, there are no unifying guidelines that can quantitatively predict qubit performance in a new material. One of the most critical property of qubits is their quantum coherence.
View Article and Find Full Text PDFIntroduction: We regard inflammatory bowel disease as a lifestyle disease mainly mediated by a westernized diet. We developed a plant-based diet (PBD) to counter the westernized diet. PBD can induce remission without medication in a subset of mild cases of ulcerative colitis.
View Article and Find Full Text PDFSynchronization of large spin Hall nano-oscillator (SHNO) arrays is an appealing approach toward ultrafast non-conventional computing. However, interfacing to the array, tuning its individual oscillators and providing built-in memory units remain substantial challenges. Here, we address these challenges using memristive gating of W/CoFeB/MgO/AlO-based SHNOs.
View Article and Find Full Text PDFTwo-dimensional (2D) van der Waals (vdW) magnetic materials have attracted a lot of attention owing to the stabilization of long range magnetic order down to atomic dimensions, and the prospect of novel spintronic devices with unique functionalities. The clarification of the magnetoresistive properties and its correlation to the underlying magnetic configurations is essential for 2D vdW-based spintronic devices. Here, the effect of Co-doping on the magnetic and magnetotransport properties of FeGeTe have been investigated.
View Article and Find Full Text PDFThe mutual synchronization of spin-torque oscillators (STOs) is critical for communication, energy harvesting and neuromorphic applications. Short range magnetic coupling-based synchronization has spatial restrictions (few µm), whereas the long-range electrical synchronization using vortex STOs has limited frequency responses in hundreds MHz (<500 MHz), restricting them for on-chip GHz-range applications. Here, we demonstrate electrical synchronization of four non-vortex uniformly-magnetized STOs using a single common current source in both parallel and series configurations at 2.
View Article and Find Full Text PDFElectrical manipulation of magnetic materials by current-induced spin torque constitutes the basis of spintronics. Here, we show an unconventional response to spin-orbit torque of a non-collinear antiferromagnet MnSn, which has attracted attention owing to its large anomalous Hall effect despite a vanishingly small net magnetization. In epitaxial heavy-metal/MnSn heterostructures, we observe a characteristic fluctuation of the Hall resistance under the application of electric current.
View Article and Find Full Text PDFIntroduction: About one-third of patients with severe ulcerative colitis (UC) do not respond to corticosteroid therapy and receive rescue therapy with infliximab or cyclosporine. Up to 20% of such patients fail to respond to rescue therapy and undergo colectomy.
Objective: We investigated the outcomes of infliximab and a plant-based diet (PBD) as first-line therapy for severe UC.
New methods to induce magnetization switching in a thin ferromagnetic material using femtosecond laser pulses without the assistance of an applied external magnetic field have recently attracted a lot of interest. It has been shown that by optically triggering the reversal of the magnetization in a GdFeCo layer, the magnetization of a nearby ferromagnetic thin film can also be reversed via spin currents originating in the GdFeCo layer. Here, using a similar structure, it is shown that the magnetization reversal of the GdFeCo is not required in order to reverse the magnetization of the ferromagnetic thin film.
View Article and Find Full Text PDFSince it was recently demonstrated in a spin-valve structure, magnetization reversal of a ferromagnetic layer using a single ultrashort optical pulse has attracted attention for future ultrafast and energy-efficient magnetic storage or memory devices. However, the mechanism and the role of the magnetic properties of the ferromagnet as well as the time scale of the magnetization switching are not understood. Here, we investigate single-shot all-optical magnetization switching in a GdFeCo/Cu/[CoNi/Pt] spin-valve structure.
View Article and Find Full Text PDFSpin Hall nano-oscillators (SHNOs) are emerging spintronic devices for microwave signal generation and oscillator-based neuromorphic computing combining nano-scale footprint, fast and ultra-wide microwave frequency tunability, CMOS compatibility, and strong non-linear properties providing robust large-scale mutual synchronization in chains and two-dimensional arrays. While SHNOs can be tuned via magnetic fields and the drive current, neither approach is conducive to individual SHNO control in large arrays. Here, we demonstrate electrically gated W/CoFeB/MgO nano-constrictions in which the voltage-dependent perpendicular magnetic anisotropy tunes the frequency and, thanks to nano-constriction geometry, drastically modifies the spin-wave localization in the constriction region resulting in a giant 42% variation of the effective damping over four volts.
View Article and Find Full Text PDFArrays of interacting 2D nanomagnets display unprecedented electromagnetic properties via collective effects, demonstrated in artificial spin ices and magnonic crystals. Progress toward 3D magnetic metamaterials is hampered by two challenges: fabricating 3D structures near intrinsic magnetic length scales (sub-100 nm) and visualizing their magnetic configurations. Here, we fabricate and measure nanoscale magnetic gyroids, periodic chiral networks comprising nanowire-like struts forming three-connected vertices.
View Article and Find Full Text PDFSkyrmion, a topologically-protected soliton, is known to emerge via electron spin in various magnetic materials. The magnetic skyrmion can be driven by low current density and has a potential to be stabilized in nanoscale, offering new directions of spintronics. However, there remain some fundamental issues in widely-studied ferromagnetic systems, which include a difficulty to realize stable ultrasmall skyrmions at room temperature, presence of the skyrmion Hall effect, and limitation of velocity owing to the topological charge.
View Article and Find Full Text PDFConventional computers operate deterministically using strings of zeros and ones called bits to represent information in binary code. Despite the evolution of conventional computers into sophisticated machines, there are many classes of problems that they cannot efficiently address, including inference, invertible logic, sampling and optimization, leading to considerable interest in alternative computing schemes. Quantum computing, which uses qubits to represent a superposition of 0 and 1, is expected to perform these tasks efficiently.
View Article and Find Full Text PDFContext: No known previous study has focused on plant-based diet (PBD) to prevent relapse of ulcerative colitis (UC) except our previous educational hospitalization study.
Objective: To describe the relapse rate in a large case series of UC after incorporation of PBD into induction therapy.
Design: All patients with UC between 2003 and 2017 were admitted for induction therapy.
Efficient information processing in the human brain is achieved by dynamics of neurons and synapses, motivating effective implementation of artificial spiking neural networks. Here, the dynamics of spin-orbit torque switching in antiferromagnet/ferromagnet heterostructures is studied to show the capability of the material system to form artificial neurons and synapses for asynchronous spiking neural networks. The magnetization switching, driven by a single current pulse or trains of pulses, is examined as a function of the pulse width (1 s to 1 ns), amplitude, number, and pulse-to-pulse interval.
View Article and Find Full Text PDFContext: No known published study has focused on a plant-based diet (PBD) in the treatment of ulcerative colitis (UC).
Objective: To investigate relapse prevention in UC after consumption of a PBD during educational hospitalization in Japan.
Design: Prospective study of patients with mild UC or UC in remission who did not need immediate treatment.
We combined scanning tunneling microscopy and locally resolved magnetic stray field measurements on the ferromagnetic semimetal EuB_{6}, which exhibits a complex ferromagnetic order and a colossal magnetoresistance effect. In a zero magnetic field, scanning tunneling spectroscopy visualizes the existence of local inhomogeneities in the electronic density of states, which we interpret as the localization of charge carriers due to the formation of magnetic polarons. Micro-Hall magnetometry measurements of the total stray field emanating from the end of a rectangular-shaped platelike sample reveals evidence for magnetic clusters also in finite magnetic fields.
View Article and Find Full Text PDF