Publications by authors named "Hideo Ishii"

In recent years, increasingly stringent pesticide regulations have made the development of new chemistries challenging. Under these regulations, the new fungicide ipflufenoquin (FRAC Code 52) was first released in Japan. Its mode of action is new; it inhibits dihydroorotate dehydrogenase (DHODH), a key enzyme in the biosynthesis of pyrimidine-based nucleotides.

View Article and Find Full Text PDF

Scab on pear is caused by two pathogens, on European pear and on Asian pear. Five races of and seven races of have been reported thus far and pathological specialization occurs in both species. Among them, the five race isolates of were previously found from wild Syrian pear.

View Article and Find Full Text PDF

Colletotrichum species cause diseases on many plants and are among the 'top 10' fungal plant pathogens. Species of the C. gloeosporioides and C.

View Article and Find Full Text PDF

Scab, caused by , is among the most serious diseases of Asian pears and control of this disease largely relies on sterol demethylation inhibitor (DMI) fungicides. However, pear growers have complained about field performance of DMIs since the mid-2000s. In this study, to evaluate pathogen sensitivity, mycelial growth tests and inoculation tests were conducted using DMI-amended culture medium and fungicide-sprayed potted pear trees, respectively.

View Article and Find Full Text PDF

Colletotrichum spp. cause devastating diseases in agricultural crops, including fruit crops. They can differ in host plant and plant organ specificity and even in fungicide sensitivity.

View Article and Find Full Text PDF

In the European Union (EU), regulation of sterol demethylation inhibiting (DMI) fungicides is tightened due to their suspected endocrine disrupting properties. However, the new DMI fungicide mefentrifluconazole was reported to have high fungicidal activity with minimal adverse side effects. In addition, some evidence suggests inconsistent cross resistance between mefentrifluconazole and other azoles.

View Article and Find Full Text PDF

Scab caused by is one of the most serious diseases of Asian pears, including Japanese pear ( var. ) and Chinese pears ( and ). Breeding scab-resistant pear cultivars is essential to minimize fungicide use and development of fungicide resistance.

View Article and Find Full Text PDF

, the cause of scab disease of Asian pears, is a host-specific, biotrophic fungus. It is restricted to Asia and is regarded as a quarantine threat outside this region. European pear displays nonhost resistance (NHR) to and Asian pears are nonhosts of (the cause of European pear scab disease).

View Article and Find Full Text PDF

Background: The development of fungicide resistance by pathogens is a major limiting factor for the control of plant diseases. To combat resistance development, the use of broad-spectrum but nonfungitoxic resistance inducers such as acibenzolar-S-methyl (ASM) is a promising approach because the orchestrated mechanisms underlying systemic acquired resistance induced by ASM are less likely to be overcome easily by pathogens. However, phytotoxicity is the main limiting factor of ASM.

View Article and Find Full Text PDF

Evolved resistance to fungicides is a major problem limiting our ability to control agricultural, medical and veterinary pathogens and is frequently associated with substitutions in the amino acid sequence of the target protein. The convention for describing amino acid substitutions is to cite the wild-type amino acid, the codon number and the new amino acid, using the one-letter amino acid code. It has frequently been observed that orthologous amino acid mutations have been selected in different species by fungicides from the same mode of action class, but the amino acids have different numbers.

View Article and Find Full Text PDF

Background: Colletotrichum species cause anthracnose diseases on many plants and crops. A new generation of succinate dehydrogenase inhibitors (SDHIs) was developed recently. The inhibitory activity of the five SDHI fungicides against Colletotrichum species was determined in this study.

View Article and Find Full Text PDF

Background: QoI fungicides, inhibitors of mitochondrial respiration, are considered to be at high risk of resistance development. In several phytopathogenic fungi, resistance is caused by mutations (most frequently G143A) in the mitochondrial cytochrome b (cytb) gene. The genetic and molecular basis of QoI resistance were investigated in laboratory and field mutants of Botryotinia fuckeliana (de Bary) Whetz.

View Article and Find Full Text PDF

Azoxystrobin (AZ), a strobilurin-derived fungicide, is known to inhibit mitochondrial respiration in fungi by blocking the electron transport chain in the inner mitochondrial membrane. Germination was strongly inhibited when Botrytis cinerea spore suspension was treated with AZ and the alternative oxidase (AOX) inhibitors, salicylhydroxamic acid (SHAM) and n-propyl gallate. However, chemical death indicators trypan blue and propidium iodide showed that those spores were still alive.

View Article and Find Full Text PDF

Background: Recently in Japan, isolates resistant to boscalid, a succinate dehydrogenase inhibitor (SDHI), have been detected in Corynespora cassiicola (Burk. & Curt.) Wei and Podosphaera xanthii (Castaggne) Braun & Shishkoff, the pathogens causing Corynespora leaf spot and powdery mildew disease on cucumber, respectively.

View Article and Find Full Text PDF

Background: It is possible that a single nucleotide polymorphism (SNP) (G143A mutation) in the cytochrome b gene could confer resistance to quinone outside inhibiting (QoI) fungicides (strobilurins) in rice blast fungus because this mutation caused a high level of resistance to fungicides such as azoxystrobin in Pyricularia grisea Sacc. and other fungal plant pathogens. The aim of this study was to survey Magnaporthe oryzae B Couch sp.

View Article and Find Full Text PDF
Article Synopsis
  • In 2004, resistant strains of the fungus Botrytis cinerea were discovered in citrus and strawberry farms in Japan, prompting a study on their characteristics.
  • Laboratory tests showed that these resistant strains could thrive on specific fungicides while sensitive strains could not, supporting results from real-world tests.
  • A mutation linked to fungicide resistance was found in some resistant isolates, but it was rare and not always clear, suggesting traditional methods for detecting this resistance may be inadequate.
View Article and Find Full Text PDF

ABSTRACT This study reports the mode of action of acibenzolar-S-methyl (ASM) against Japanese pear scab, caused by Venturia nashicola. Pretreatment of potted Japanese pear trees with ASM reduced scab symptoms and potentiated several lines of plant defense response. This included transcripts encoding polygalacturonase-inhibiting protein (PGIP) that were highly and transiently promoted after scab inoculation of plants pretreated with ASM, suggesting a possible role for defenses involved in direct interaction with the pathogen.

View Article and Find Full Text PDF

Anthracnose diseases of fruit crops are mainly caused by Colletotrichum gloeosporioides and C. acutatum. In these Colletotrichum species, intra- and interspecific variation in fungicide sensitivity has been reported; however, the relationship between fungicide sensitivity and molecular phylogeny has not been analyzed.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionj5hs4oqt79m26ol53917pas1l9lc5092): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once