Publications by authors named "Hidenori Matsuzaki"

Notwithstanding the several investigations of the hydroxy fatty acids (hFAs)' physiological functions, studies focusing on their anti-obesity effects are limited. This study investigated the anti-obesity effects of 4 hFAs-10-hydroxy stearic acid (10-hSA), 12-hydroxy stearic acid (12-hSA), 9,12-hydroxy stearic acid (9,12-dhSA), and 12-hydroxy oleic acid (12-hOA)-on the 3T3-L1 cells. All hFAs suppressed lipid accumulation, with 10-hSA and 12-hOA exhibiting the strongest suppression, followed by 12-hSA and 9,12-hSA.

View Article and Find Full Text PDF
Article Synopsis
  • Asbestos exposure is linked to the development of mesothelioma and reduces the immune system's ability to produce cytotoxic T lymphocytes (CTLs), crucial for fighting tumors.
  • In experiments, adding interleukin-15 (IL-15) to cultured immune cells exposed to asbestos partly restored the number of active CD8 T cells and increased granzyme B, a protein important for tumor cell destruction.
  • However, IL-15 did not reverse all the negative effects of asbestos, particularly regarding certain markers (CD25 and CD45RO) in CD8 lymphocytes, indicating a complex interaction between asbestos exposure and immune response.
View Article and Find Full Text PDF

Asbestos exposure is known to cause malignant mesothelioma, which is associated with poor prognosis. We focused on and examined the effect of asbestos exposure on the differentiation and function of cytotoxic T lymphocytes (CTLs). CTLs have the ability to specifically attack tumor cells after being differentiated from naïve CD8 T cells following antigen stimulation.

View Article and Find Full Text PDF

The effects of asbestos fibers on human immune cells have not been well documented. We have developed a continuously exposed cell line model using the human T-lymphotropic virus 1 (HTLV-1)-immortalized human T cell line MT-2. Sublines continuously exposed to chrysotile (CH) or crocidolite (CR) showed acquired resistance to asbestos-induced apoptosis following transient and high-dose re-exposure with fibers.

View Article and Find Full Text PDF

Although the tumorigenicity of asbestos, which is thought to cause mesothelioma, has been clarified, its effect on antitumor immunity requires further investigation. We previously reported a decrease in the percentage of perforin cells of stimulated CD8 lymphocytes derived from patients with malignant mesothelioma. Therefore, we examined the effects of long-term exposure to asbestos on CD8 T cell functions by comparing long-term cultures of the human CD8 T cell line EBT-8 with and without exposure to chrysotile (CH) asbestos as an model.

View Article and Find Full Text PDF

Prompted by the known carcinogenic activity of asbestos, our investigations revealed that asbestos causes a reduction in antitumor immunity. One mechanism involves the enhancement of regulatory T (Treg) cell function and volume assayed using MT‑2 original cells (Org), an HTLV‑1 immortalized human T cell line which possesses Treg‑like function. Continuous and relatively low‑dose exposure of MT‑2 to asbestos fibers yielded sublines resistant to asbestos‑induced apoptosis and enhanced Treg function via cell‑cell contact mechanisms and increased the production of soluble factors such as interleukin (IL)‑10 and transforming growth factor (TGF)‑β.

View Article and Find Full Text PDF

Objective: The changes in serum adipokines and cytokines related to oxidative stress were examined during 3 months 'Off to On' and 'On to Off' periods using negatively charged particle-dominant indoor air conditions (NCPDIAC).

Methods: Seven volunteers participated in the study, which included 'OFF to 3 months ON' periods (ON trials) for a total of 16 times, and 'ON to 3 months OFF' (OFF trials) periods for a total of 13 times.

Results: With the exception of one case, serum amyloid A (SAA) levels decreased significantly during the ON trials.

View Article and Find Full Text PDF

Objectives: This study aimed to evaluate the effect of Royal Jelly (RJ) at a dose of 800 mg/day on menopausal symptoms in healthy Japanese postmenopausal women with placebo-controlled design.

Material And Methods: A total of 42 healthy Japanese postmenopausal women have been recruited for this study. The subjects were randomized to oral treatment with either 800 mg of protease-digested lyophilized powder of RJ (enzyme-treated RJ) or placebo (800 mg of dextrin) daily for 12 weeks.

View Article and Find Full Text PDF

The immunological effects of asbestos exposure on various lymphocytes such as the regulatory T cell (Treg), responder CD4+ T helper cell (Tresp), CD8+ cytotoxic T lymphocytes (CTL), and natural killer (NK) cells were investigated. Results show that asbestos exposure impairs antitumor immunity through enhancement of regulatory T cell function and volume, reduction of CXCR3 chemokine receptor in responder CD4+ T helper cells, and impairment of the killing activities of CD8+ cytotoxic T lymphocytes (CTL) and NK cells. These findings were used to explore biological markers associated with asbestos exposure and asbestos-induced cancers and suggested the usefulness of serum/plasma IL-10 and TGF-β, surface CXCR3 expression in Tresp, the secreting potential of IFN-γ in Tresp, intracellular perforin level in CTL, and surface expression NKp46 in NK cells.

View Article and Find Full Text PDF

Silicosis patients (SIL) suffer from respiratory disorders and dysregulation of autoimmunity. Frequent complications such as rheumatoid arthritis, systemic sclerosis (SSc) and vasculitis are known in SIL. Furthermore, we reported previously that some SIL exhibited better respiratory conditions in association with a worse immunological status.

View Article and Find Full Text PDF
Article Synopsis
  • Chronic low-dose asbestos exposure weakens antitumor immunity by reducing the effectiveness of natural killer (NK) cells and cytotoxic T lymphocytes (CTLs), leading to decreased activation and cytotoxic molecules.
  • Asbestos exposure also hampers the function of T helper (Th) cells, particularly decreasing surface CXCR3 and interferon (IFN)γ production in asbestos-exposed patients.
  • The study highlights that asbestos promotes regulatory T cell (Treg) activity, impacting the balance between Treg and Th-17 cells, which is significant for understanding how asbestos exposure affects immune responses and cancer susceptibility.
View Article and Find Full Text PDF
Article Synopsis
  • Previous research showed that exposure to chrysotile B (CB) asbestos inhibits the formation of mature cytotoxic T lymphocytes (CTLs) during immune reactions, specifically reducing immature CTL proliferation.
  • *Adding interleukin-2 (IL-2) in a mixed lymphocyte reaction did not fully restore the proliferation of CTLs affected by asbestos, although some recovery of granzyme B cells was observed.
  • *The study suggests that IL-2 alone is not the main factor behind the suppressed CTL differentiation caused by asbestos, indicating that other secretory factors or stimulatory molecules may also contribute to this immune response impairment.*
View Article and Find Full Text PDF

Asbestos exposure causes malignant tumors such as lung cancer and malignant mesothelioma. Based on our hypothesis in which continuous exposure to asbestos of immune cells cause reduction of antitumor immunity, the decrease of natural killer cell killing activity with reduction of NKp46 activating receptor expression, inhibition of cytotoxic T cell clonal expansion, reduced CXCR3 chemokine receptor expression and production of interferon-γ production in CD4+ T cells were reported using cell line models, freshly isolated peripheral blood immune cells from health donors as well as asbestos exposed patients such as pleural plaque and mesothelioma. In addition to these findings, regulatory T cells (Treg) showed enhanced function through cell-cell contact and increased secretion of typical soluble factors, interleukin (IL)-10 and transforming growth factor (TGF)-β, in a cell line model using the MT-2 human polyclonal T cells and its sublines exposed continuously to asbestos fibers.

View Article and Find Full Text PDF

Objective: The custom-homebuilding company, Cosmic Garden Co. Ltd., located in Okayama City, Japan was established in 1997 and uses specific natural ore powder (SNOP) in wall materials and surveys customers in order to improve allergic symptoms.

View Article and Find Full Text PDF

Malignant mesothelioma (MM) is thought to arise from the direct effect of asbestos on mesothelial cells. However, MM takes a long time to develop following exposure to asbestos, which suggests that the effects of asbestos are complex. The present study examined the effects of asbestos exposure on the cell growth of MeT-5A human mesothelial cells via cytokines produced by immune cells.

View Article and Find Full Text PDF

Asbestos is known to cause malignant mesothelioma and lung cancer. Recent studies implicate tumor immunity in the development of various tumors, including malignant mesothelioma. In order to establish an in vitro T-cell model to clarify the effects of long-term exposure of asbestos on tumor immunity, in this study, human T-cell line MT-2 cells were cultured with asbestos for longer than 8 months and the resultant cells (MT-2Rst) were assessed for the expression of forkhead transcription factor FoxO1.

View Article and Find Full Text PDF

Among the various scientific fields covered in the area of hygiene such as environmental medicine, epidemiology, public health and preventive medicine, we are investigating the immunological effects of fibrous and particulate substances in the environment and work surroundings, such as asbestos fibers and silica particles. In addition to these studies, we have attempted to construct health-promoting living conditions. Thus, in this review we will summarize our investigations regarding the (1) immunological effects of asbestos fibers, (2) immunological effects of silica particles, and (3) construction of a health-promoting living environment.

View Article and Find Full Text PDF

Asbestos exposure causes lung fibrosis and various malignant tumors such as lung cancer and malignant mesothelioma. The effects of asbestos on immune cells have not been thoroughly investigated, although our previous reports showed that asbestos exposure reduced anti-tumor immunity. The effects of continuous exposure of regulatory T cells (Treg) to asbestos were examined using the HTLV-1 immortalized human T cell line MT-2, which possesses a suppressive function and expresses the Treg marker protein, Foxp3.

View Article and Find Full Text PDF

Indoor air-conditions may play an important role in human health. Investigation of house conditions that promote health revealed that negatively charged-particle dominant indoor air-conditions (NAC) induced immune stimulation. NAC was established using fine charcoal powder on walls and ceilings and utilizing forced negatively charged particles (approximate diameter: 20 nm) dominant in indoor air-conditions created by applying an electric voltage (72 V) between the backside of the walls and the ground.

View Article and Find Full Text PDF

Investigation of house conditions that promote health revealed that negatively charged-particle dominant indoor air-conditions (NCPDIAC) induced immune stimulation. Negatively charged air-conditions were established using a fine charcoal powder on walls and ceilings and utilizing forced negatively charged particles (approximate diameter: 20 nm) dominant in indoor air-conditions created by applying an electric voltage (72 V) between the backside of the walls and the ground. We reported previously that these conditions induced a slight and significant increase of interleukin-2 during a 2.

View Article and Find Full Text PDF

Malignant mesothelioma is caused by exposure to asbestos, which is known to have carcinogenic effects. However, the development of mesothelioma takes a long period and results from a low or intermediate dose of exposure. These findings have motivated us to investigate the immunological effects of asbestos exposure and analyze immune functions of patients with mesothelioma and pleural plaque, a sign of exposure to asbestos.

View Article and Find Full Text PDF

Asbestos exposure causes various tumors such as lung cancer and malignant mesothelioma. To elucidate the immunological alteration in asbestos-related tumors, an asbestos-induced apoptosis-resistant subline (MT-2Rst) was established from a human adult T cell leukemia virus-immortalized T cell line (MT-2Org) by long-term exposure to asbestos chrysotile-B (CB). In this study, transforming growth factor-β1 (TGF-β1) knockdown using lentiviral vector-mediated RNA interference showed that MT-2Rst cells secreted increased levels of TGF-β1, and acquired resistance to TGF-β1-mediated growth inhibition.

View Article and Find Full Text PDF

Silica particles and asbestos fibers, which are known as typical causatives of pneumoconiosis, induce lung fibrosis. Moreover, silicosis patients often complicate with autoimmune diseases, and asbestos-exposed patients suffer from malignant diseases such as pleural mesothelioma and lung cancer. We have been conducting experimental studies to investigate altered regulation of self-tolerance caused by silica exposure, including analyses using specimens such as plasma and immunocompetent cells obtained from silicosis patients, as a means of examining the supposition that silica exposure induces molecular and cellular biological alterations of immune cells.

View Article and Find Full Text PDF

It is known that asbestos exposure can cause malignant mesothelioma (MM) and that CD8(+) T cells play a critical role in antitumor immunity. We examined the properties of peripheral blood CD8(+) lymphocytes from asbestos-exposed patients with pleural plaque (PL) and MM. The percentage of CD3(+)CD8(+) cells in PBMCs did not differ among the three groups, although the total numbers of PBMCs of the PL and MM groups were lower than those of the healthy volunteers (HV).

View Article and Find Full Text PDF

Among the various biological effects of asbestos such as fibrogenesis and carcinogenesis, we have been focusing on the immunological effects becausesilica (SiO(2)) and asbestos chemically is a mineral silicate of silica. Observations of the effects of asbestos on CD4+ T cells showed reduction of CXCR3 chemokine receptor and reduced capacity of interferon γ production. In particular, use of theHTLV-1 immortalized human T cell line, MT-2, and cDNA array analysis have helped to identify the modification of CXCR3.

View Article and Find Full Text PDF