Publications by authors named "Hidenori Hirose"

The ex vivo generation of platelets from human-induced pluripotent cells (hiPSCs) is expected to compensate donor-dependent transfusion systems. However, manufacturing the clinically required number of platelets remains unachieved due to the low platelet release from hiPSC-derived megakaryocytes (hiPSC-MKs). Here, we report turbulence as a physical regulator in thrombopoiesis in vivo and its application to turbulence-controllable bioreactors.

View Article and Find Full Text PDF

Donor-independent platelet concentrates for transfusion can be produced in vitro from induced pluripotent stem cells (iPSCs). However, culture at 37°C induces ectodomain shedding on platelets of glycoprotein Ibα (GPIbα), the von Willebrand factor receptor critical for adhesive function and platelet lifetime in vivo, through temperature-dependent activation of a disintegrin and metalloproteinase 17 (ADAM17). The shedding can be suppressed by using inhibitors of panmetalloproteinases and possibly of the upstream regulator p38 mitogen-activated protein kinase (p38 MAPK), but residues of these inhibitors in the final platelet products may be accompanied by harmful risks that prevent clinical application.

View Article and Find Full Text PDF

The presence of subdomains in the endoplasmic reticulum (ER) enables this organelle to perform a variety of functions, yet the mechanisms underlying their organization are poorly understood. In the present study, we show that syntaxin 18, a SNAP (soluble NSF attachment protein) receptor localized in the ER, is important for the organization of two ER subdomains, smooth/rough ER membranes and ER exit sites. Knockdown of syntaxin 18 caused a global change in ER membrane architecture, leading to the segregation of the smooth and rough ER.

View Article and Find Full Text PDF

Aims: Food deprivation (fasting) is commonly encountered in the lives of animals and humans. In mammals, adaptive responses predominantly include the induction of hepatic gluconeogenesis, but the regulatory mechanisms remain unclear. Atf5 (activating transcription factor 5) is a transcription factor of the ATF/cAMP response element-binding protein family and is expressed abundantly in human liver.

View Article and Find Full Text PDF

Activating transcription factor (ATF) 5 is a transcription factor belonging to the ATF/cAMP-response element-binding protein gene family. We previously reported that ATF5 mRNA expression increased in response to amino acid limitation. The ATF5 gene allows transcription of mRNAs with at least two alternative 5'-untranslated regions (5'-UTRs), 5'-UTRalpha and 5'-UTRbeta, derived from exon1alpha and exon1beta.

View Article and Find Full Text PDF

A cDNA encoding the Pacific oyster, Crassostrea gigas, estrogen receptor (cgER) was cloned using degenerate PCR primers. The open reading frame predicted 485 amino acid residues. Comparisons of the amino acid sequence of cgER with other mollusk ERs show high similarities of the C domain (95-97%), and the E domain (56-66%).

View Article and Find Full Text PDF

ATF5 is a transcription factor in the cAMP response element (CRE)-binding protein/activating transcription factor (CREB/ATF) family. We studied the effect of amino acid limitation on ATF5 mRNA levels in a mammalian cell line. Northern-blot analysis demonstrated that limitation of a single amino acid, glutamine, methionine, or leucine, resulted in increased ATF5 mRNA levels in HeLaS3 cells.

View Article and Find Full Text PDF

Sex steroid hormones have been widely detected in molluscs, and experiments have shown the importance of sex steroids in sex determination, gonadal tissue maturation and gametogenesis. Nevertheless, the signaling pathways of sex steroids in invertebrates have not yet been elucidated. In order to gain insights into the mechanism of sex steroid signaling in molluscs, we have, therefore, tried to isolate molluscan estrogen receptors from the prosobranch mollusc Thais clavigera.

View Article and Find Full Text PDF

BNIP1, a member of the BH3-only protein family, was first discovered as one of the proteins that are capable of interacting with the antiapoptotic adenovirus E1B 19-kDa protein. Here we disclose a totally unexpected finding that BNIP1 is a component of the complex comprising syntaxin 18, an endoplasmic reticulum (ER)-located soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (SNAP) receptor (SNARE). Functional analysis revealed that BNIP1 participates in the formation of the ER network structure, but not in membrane trafficking between the ER and Golgi.

View Article and Find Full Text PDF

ZW10, a dynamitin-interacting protein associated with kinetochores, is known to participate directly in turning off of the spindle checkpoint. In the present study, we show that ZW10 is located in the endoplasmic reticulum as well as in the cytosol during interphase, and forms a subcomplex with RINT-1 (Rad50-interacting protein) and p31 in a large complex comprising syntaxin 18, an endoplasmic reticulum-localized t-SNARE implicated in membrane trafficking. Like conventional syntaxin-binding proteins, ZW10, RINT-1 and p31 dissociated from syntaxin 18 upon Mg(2+)-ATP treatment in the presence of NSF and alpha-SNAP, whereas the subcomplex was not disassembled.

View Article and Find Full Text PDF

Mammalian Enabled (Mena) is a mammalian homologue of Drosophila Enabled (Ena), which genetically interacts with Drosophila Abl tyrosine kinase. The signaling pathway involving c-Abl and Mena (Ena) is not fully understood. To find molecules that participate in the c-Abl/Mena pathway, we searched for Mena-binding proteins using a yeast two-hybrid system.

View Article and Find Full Text PDF