Proteins, especially multi-domain proteins, often undergo drastic conformational changes upon binding to ligands or by post-translational modifications, which is a key step to regulate their function. However, the detailed mechanisms of such dynamic regulation of the functional processes are poorly understood because of the lack of an efficient tool. We here demonstrate detailed characterization of conformational changes of MurD, a 47 kDa protein enzyme consisting of three domains, by the use of solution NMR equipped with paramagnetic lanthanide probe.
View Article and Find Full Text PDFG-protein-coupled receptor (GPCR) ligands impart differing degrees of signaling in the G-protein and arrestin pathways, in phenomena called "biased signaling". However, the mechanism underlying the biased signaling of GPCRs is still unclear, although crystal structures of GPCRs bound to the G protein or arrestin are available. In this study, we observed the NMR signals from methionine residues of the μ-opioid receptor (μOR) in the balanced- and biased-ligand-bound states.
View Article and Find Full Text PDFMany drugs that target G-protein-coupled receptors (GPCRs) induce or inhibit their signal transduction with different strengths, which affect their therapeutic properties. However, the mechanism underlying the differences in the signalling levels is still not clear, although several structures of GPCRs complexed with ligands determined by X-ray crystallography are available. Here we utilized NMR to monitor the signals from the methionine residue at position 82 in neutral antagonist- and partial agonist-bound states of β(2)-adrenergic receptor (β(2)AR), which are correlated with the conformational changes of the transmembrane regions upon activation.
View Article and Find Full Text PDFIn this study, we tried to establish a general scheme to create a model that could predict the affinity of small compounds to their target proteins. This scheme consists of a search for ligand-binding sites on a protein, a generation of bound conformations (poses) of ligands in each of the sites by docking, identifications of the correct poses of each ligand by consensus scoring and MM-PBSA analysis, and a construction of a CoMFA model with the obtained poses to predict the affinity of the ligands. By using a crystal structure of CYP 2C9 and the twenty known CYP inhibitors as a test case, we obtained a CoMFA model with a good statistics, which suggested that the classification of the binding sites as well as the predicted bound poses of the ligands should be reasonable enough.
View Article and Find Full Text PDFVitronectin receptor (alpha(V)beta(3)) antagonists have been implicated as a possible new treatment of restenosis following balloon angioplasty. In this work we investigate a series of novel arginine mimetic scaffolds leading to new insight of the alpha(V)beta(3)/ligand interaction. Squaric acid amide 10 is a subnanomolar alpha(V)beta(3) antagonist with improved potency on human smooth muscle cell migration.
View Article and Find Full Text PDFWe have developed a new in-silico drug screening method, a modified version of a docking score index (DSI) method, based on a protein-compound docking affinity matrix. By using this method, the docking scores are converted to the docking score indexes by the principal component analysis (PCA) method and each compound is projected into a PCA space. In this study, we propose a method to select a set of suitable principal component axes and evaluate the database enrichment for 12 target proteins.
View Article and Find Full Text PDFInhibition of the metalloprotease ECE-1 may be beneficial for the treatment of coronary heart disease, cancer, renal failure, and urological disorders. A novel class of indole-based ECE inhibitors was identified by high throughput screening. Optimization of the original screening lead structure 6 led to highly potent inhibitors such as 11, which bears a bisaryl amide moiety linked to the indole C2 position through an amide group.
View Article and Find Full Text PDFTo investigate the effect of flavonoids on the activation of p72(syk) (Syk) protein tyrosine kinase which plays a pivotal role in the high affinity IgE receptor-mediated degranulation of mast cells, we picked out 10 flavonoids, classified them into 4 series, and examined their effects on the activation of Syk and on the degranulation of human mast cells. Flavones and flavonols showed clear inhibition, whereas flavanones and isoflavones had either weak or no effect on Syk enzymatic activity induced by amino acid peptide corresponding to the activation loop domain and on IgE-dependent degranulation of human cultured mast cells (HCMC). On the basis of calculated logP (ClogP) values as a prediction of compound lipophilicity, some flavonoids were speculated to have low lipophilicity, the reason for poor cell permeability.
View Article and Find Full Text PDFVitronectin receptor (alpha(V)beta(3)) antagonism has been implicated in a variety of disease states, like restenosis, osteoporosis and cancer. In this work, we present the development of a novel class of biphenyl vitronectin receptor antagonists. Identified from a focused combinatorial library based on para-bromo phenylalanine, these compounds show nanomolar affinity to the vitronectin receptor and display unprecedented SAR.
View Article and Find Full Text PDF