Among over 150 distinct RNA modifications, N6-methyladenosine (m6A) and adenosine-to-inosine (A-to-I) RNA editing represent 2 of the most studied modifications on mammalian mRNAs. Although both modifications occur on adenosine residues, knowledge on potential functional crosstalk between these 2 modifications is still limited. Here, we show that the m6A modification promotes expression levels of the ADAR1, which encodes an A-to-I RNA editing enzyme, in response to interferon (IFN) stimulation.
View Article and Find Full Text PDFDisruption of the circadian clock machinery in cancer cells is implicated in tumor malignancy. Studies on cancer therapy reveal the presence of heterogeneous cells, including breast cancer stem-like cells (BCSCs), in breast tumors. BCSCs are often characterized by high aldehyde dehydrogenase (ALDH) activity, associated with the malignancy of cancers.
View Article and Find Full Text PDFN-methyladenosine (mA) is the most abundant mRNA modification and is installed by the METTL3-METTL14-WTAP methyltransferase complex. Although the importance of mA methylation in mRNA metabolism has been well documented recently, regulation of the mA machinery remains obscure. Through a genome-wide CRISPR screen, we identify the ERK pathway and USP5 as positive regulators of the mA deposition.
View Article and Find Full Text PDFIn mammals, the central circadian clock is located in the suprachiasmatic nucleus (SCN) of the hypothalamus and it orchestrates peripheral clocks in the whole body to organize physiological and behavioral rhythms. Light-induced phase-shift of the SCN clock enables synchronization of the circadian clock system with 24-h environmental light/dark cycle. We previously found that adenosine deaminase acting on RNA 2 (Adar2), an A-to-I RNA editing enzyme catalyzing rhythmic A-to-I RNA editing, governs a wide range of mRNA rhythms in the mouse liver and regulates the circadian behavior.
View Article and Find Full Text PDFIt has been proposed that the CLOCK-ARNTL (BMAL1) complex drives circadian transcription of thousands of genes, including Per and Cry family genes that encode suppressors of CLOCK-ARNTL-dependent transcription. However, recent studies demonstrated that 70-80% of circadian-oscillating mRNAs have no obvious rhythms in their de novo transcription, indicating the potential importance of post-transcriptional regulation. Our CLOCK-ChIP-seq analysis identified rhythmic expression of adenosine deaminase, RNA-specific, B1 (Adarb1, also known as Adar2), an adenosine-to-inosine (A-to-I) RNA-editing enzyme.
View Article and Find Full Text PDFIn mammalian circadian clockwork, the CLOCK-BMAL1 complex binds to DNA enhancers of target genes and drives circadian oscillation of transcription. Here we identified 7,978 CLOCK-binding sites in mouse liver by chromatin immunoprecipitation-sequencing (ChIP-Seq), and a newly developed bioinformatics method, motif centrality analysis of ChIP-Seq (MOCCS), revealed a genome-wide distribution of previously unappreciated noncanonical E-boxes targeted by CLOCK. In vitro promoter assays showed that CACGNG, CACGTT, and CATG(T/C)G are functional CLOCK-binding motifs.
View Article and Find Full Text PDFInosine is an abundant RNA modification in the human transcriptome and is essential for many biological processes in modulating gene expression at the post-transcriptional level. Adenosine deaminases acting on RNA (ADARs) catalyze the hydrolytic deamination of adenosines to inosines (A-to-I editing) in double-stranded regions. We previously established a biochemical method called "inosine chemical erasing" (ICE) to directly identify inosines on RNA strands with high reliability.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2011
Yeast is a model eukaryote with a variety of biological resources. Here we developed a method to track a quantum dot (QD)-conjugated protein in the budding yeast Saccharomyces cerevisiae. We chemically conjugated QDs with the yeast prion Sup35, incorporated them into yeast spheroplasts, and tracked the motions by conventional two-dimensional or three-dimensional tracking microscopy.
View Article and Find Full Text PDF