Publications by authors named "Hideki Takayasu"

Human mobility in an urban area is complicated; the origins, destinations, and transportation modes of each person differ. The quantitative description of urban human mobility has recently attracted the attention of researchers, and it highly related to urban science problems. Herein, combined with physics inspiration, we introduce a revised electric circuit model (RECM) in which moving people are regarded as charged particles and analogical concepts of electromagnetism such as human conductivity and human potential enable us to capture the characteristics of urban human mobility.

View Article and Find Full Text PDF

The convenience store industry in Japan holds immense significance, making a thorough comprehension of customer purchase behaviour invaluable for companies aiming to gain insights into their customer base. In this paper, we propose a novel application of a Markov network model to simulate purchases guided by stopping probabilities calculated from real data. Each node in the Markov network represents different product categories available for purchase.

View Article and Find Full Text PDF

We develop a single two-layered model framework that captures and replicates both the statistical properties of the network as well as those of the intrinsic quantities of the agents. Our model framework consists of two distinct yet connected elements that were previously only studied in isolation, namely methods related to temporal network structures and those associated with money transport flows. Within this context, the network structure emerges from the first layer and its topological structure is transferred to the second layer associated with the money transactions.

View Article and Find Full Text PDF

We analyze the time series of hashtag numbers of social media data. We observe that the usage distribution of hashtags is characterized by a fat-tailed distribution with a size-dependent power law exponent and we find that there is a clear dependency between the growth rate distributions of hashtags and size of hashtags usage. We propose a generalized random multiplicative process model with a theory that explains the size dependency of the fat-tailed distribution.

View Article and Find Full Text PDF

We introduce a new non-black-box method of extracting multiple areas in a high-dimensional big data space where data points that satisfy specific conditions are highly concentrated. First, we extract one-dimensional areas where the data that satisfy specific conditions are mostly gathered by using the Bayesian method. Second, we construct higher-dimensional areas where the densities of focused data points are higher than the simple combination of the results for one dimension, and then we verify the results through data validation.

View Article and Find Full Text PDF

We propose a data-driven stochastic method that allows the simulation of a complex system's long-term evolution. Given a large amount of historical data on trajectories in a multi-dimensional phase space, our method simulates the time evolution of a system based on a random selection of partial trajectories in the data without detailed knowledge of the system dynamics. We apply this method to a large data set of time evolution of approximately one million business firms for a quarter century.

View Article and Find Full Text PDF

During the COVID-19 pandemic, governments faced difficulties in implementing mobility restriction measures, as no clear quantitative relationship between human mobility and infection spread in large cities is known. We developed a model that enables quantitative estimations of the infection risk for individual places and activities by using smartphone GPS data for the Tokyo metropolitan area. The effective reproduction number is directly calculated from the number of infectious social contacts defined by the square of the population density at each location.

View Article and Find Full Text PDF

Owing to the big data the extension of physical laws on nonmaterial has seen numerous successes, and human mobility is one of the scientific frontier topics. Recent GPS technology has made it possible to trace detailed trajectories of millions of people, macroscopic approaches such as the gravity law for human flow between cities and microscopic approaches of individual origin-destination distributions are attracting much attention. However, we need a more general basic model with wide applicability to realize traffic forecasting and urban planning of metropolis fully utilizing the GPS data.

View Article and Find Full Text PDF

Bursts and collective emotion have been widely studied in social physics field where researchers use mathematical models to understand human social dynamics. However, few researches recognize and separately analyze the internal and external influence on burst behaviors. To bridge this gap, we introduce a non-parametric approach to classify an interevent time series into five scenarios: random arrival, endogenous burst, endogenous non-burst, exogenous burst and exogenous non-burst.

View Article and Find Full Text PDF

Traders who instantly react to changes in the financial market and place orders in milliseconds are called high-frequency traders (HFTs). HFTs have recently become more prevalent and attracting attention in the study of market microstructures. In this study, we used data to track the order history of individual HFTs in the USD/JPY forex market to reveal how individual HFTs interact with the order book and what strategies they use to place their limit orders.

View Article and Find Full Text PDF

To prevent the spread of the COVID-19 pandemic, governments in various countries have severely restricted the movement of people. The large amount of detailed human location data obtained from mobile phone users is useful for understanding the change of flow patterns of people under the effect of pandemic. In this paper, we observe the synchronized human flow during the COVID-19 pandemic using Global Positioning System data of about 1 million people obtained from mobile phone users.

View Article and Find Full Text PDF

The Sigma-Pi structure investigated in this work consists of the sum of products of an increasing number of identically distributed random variables. It appears in stochastic processes with random coefficients and also in models of growth of entities such as business firms and cities. We study the Sigma-Pi structure with Bernoulli random variables and find that its probability distribution is always bounded from below by a power-law function regardless of whether the random variables are mutually independent or duplicated.

View Article and Find Full Text PDF

Although the sizes of business firms have been a subject of intensive research, the definition of a "size" of a firm remains unclear. In this study, we empirically characterize in detail the scaling relations between size measures of business firms, analyzing them based on allometric scaling. Using a large dataset of Japanese firms that tracked approximately one million firms annually for two decades (1994-2015), we examined up to the trivariate relations between corporate size measures: annual sales, capital stock, total assets, and numbers of employees and trading partners.

View Article and Find Full Text PDF

Detail observation of human locations became available recently by the development of information technology such as mobile phones with GPS (Global Positioning System). We analyzed temporal changes of global human flow patterns in urban regions based on mobile phones' GPS data in 9 large cities in Japan. By applying a new concept of drainage basins in analogous to river flow patterns, we discovered several universal scaling relations.

View Article and Find Full Text PDF

From the viewpoint of statistical physics, ecosystems in the real world are very attractive targets of research as examples of far-from thermal equilibrium systems where various kinds of components are coming in and out continuously while keeping the whole systems quasi-stationary. As a fortunate example of a fully-observable ecosystem, we analyzed the comprehensive data of convenience stores where approximately 5% of the commodity species is replaced by new ones daily. The share of stores for each species fluctuates significantly; however, the entire distribution of shares is fairly stationary and follows the log-uniform distribution, that is, the power law distribution with exponent 0.

View Article and Find Full Text PDF

Complexity and information theory are two very valuable but distinct fields of research, yet sharing the same roots. Here, we develop a complexity framework inspired by the allometric scaling laws of living biological systems in order to evaluate the structural features of networks. This is done by aligning the fundamental building blocks of information theory (entropy and mutual information) with the core concepts in network science such as the preferential attachment and degree correlations.

View Article and Find Full Text PDF

We propose the epsilon-tau procedure to determine up- and down-trends in a time series, working as a tool for its segmentation. The method denomination reflects the use of a tolerance level ε for the series values and a patience level τ in the time axis to delimit the trends. We first illustrate the procedure in discrete random walks, deriving the exact probability distributions of trend lengths and trend amplitudes, and then apply it to segment and analyze the trends of U.

View Article and Find Full Text PDF

Foreign exchange rates movements exhibit significant cross-correlations even on very short time-scales. The effect of these statistical relationships become evident during extreme market events, such as flash crashes. Although a deep understanding of cross-currency correlations would be clearly beneficial for conceiving more stable and safer foreign exchange markets, the microscopic origins of these interdependencies have not been extensively investigated.

View Article and Find Full Text PDF

Companies tend to publish financial reports in order to articulate strategies, disclose key performance measurements as well as summarise the complex relationships with external stakeholders as a result of their business activities. Therefore, any major changes to business models or key relationships will be naturally reflected within these documents, albeit in an unstructured manner. In this research, we automatically scan through a large and rich database, containing over 400,000 reports of companies in Japan, in order to generate structured sets of data that capture the essential features, interactions and resulting relationships among these firms.

View Article and Find Full Text PDF

Financial prices fluctuate as a results of the market impact of the flow of transactions between traders. Reciprocally, several studies of market microstructure have shown how decisions of individual traders or banks, implemented in their trading strategies, are affected by historical market information. However, little is known about the detailed processes of how such trading strategies at the micro level recursively affect future market information at the macro level.

View Article and Find Full Text PDF

The analysis of interfirm business transaction networks provides invaluable insight into the trading dynamics and economic structure of countries. However, there is a general scarcity of data available recording real, accurate and extensive information for these types of networks. As a result, and in common with other types of network studies - such as protein interactions for instance - research tends to rely on partial and incomplete datasets, i.

View Article and Find Full Text PDF

Collective emotion has been traditionally evaluated by questionnaire survey on a limited number of people. Recently, big data of written texts on the Internet has been available for analyzing collective emotion for very large scales. Although short-term reflection between collective emotion and real social phenomena has been widely studied, long-term dynamics of collective emotion has not been studied so far due to the lack of long persistent data sets.

View Article and Find Full Text PDF

There is a growing interest to understand financial markets as ecological systems, where the variety of trading strategies correspond to that of biological species. For this purpose, transaction data for individual traders are studied recently as empirical analyses. However, there are few empirical studies addressing how traders submit limit and market order at the level of individual traders.

View Article and Find Full Text PDF

We introduce a systematic method to estimate an economic indicator from the Japanese government by analyzing big Japanese blog data. Explanatory variables are monthly word frequencies. We adopt 1352 words in the section of economics and industry of the Nikkei thesaurus for each candidate word to illustrate the economic index.

View Article and Find Full Text PDF