Optimization of the highly potent and selective, yet metabolically unstable and poorly soluble hRXFP1 agonist AZ7976 led to the identification of the clinical candidate, AZD5462. Assessment of RXFP1-dependent cell signaling demonstrated that AZD5462 activates a highly similar panel of downstream pathways as relaxin H2 but does not modulate relaxin H2-mediated cAMP second messenger responsiveness. The therapeutic potential of AZD5462 was assessed in a translatable cynomolgus monkey heart failure model.
View Article and Find Full Text PDFRelaxin H2 is a clinically relevant peptide agonist for relaxin family peptide receptor 1 (RXFP1), but a combination of this hormone's short plasma half-life and the need for injectable delivery limits its therapeutic potential. We sought to overcome these limitations through the development of a potent small molecule (SM) RXFP1 agonist. Although two large SM HTS campaigns failed in identifying suitable hit series, we uncovered novel chemical space starting from the only known SM RXFP1 agonist series, represented by ML290.
View Article and Find Full Text PDFUrinary nano-extracellular vesicles (NVs), including exosomes and microvesicles, are considered potential biomarkers for kidney diseases using liquid biopsies. However, clinical application of urinary NVs has not yet been validated. In the present study, the levels of mRNAs in urinary NVs in animal models of kidney disease were assessed.
View Article and Find Full Text PDFA novel series of highly selective phosphodiesterase 5 (PDE5) inhibitors was found. 8H-Pyrido[2,3-d]pyrimidin-7-one derivatives bearing an (S)-2-(hydroxymethyl)pyrrolidin-1-yl group at the 2-position and a 3-chloro-4-methoxybenzyl group at the 8-position exhibited potent PDE5 inhibitory activities and high PDE5 selectivity over PDE6. Among the synthesized compounds, the 5-methyl analogue (5b) showed the most potent relaxant effect on isolated rabbit corpus cavernosum with an EC30 value of 0.
View Article and Find Full Text PDFRenal dysfunction is accelerated by various factors such as hypertension, aging and diabetes. Glomerular hyper-filtration, considered one of the major risk factors leading to diabetic nephropathy, is often encountered in diabetic patients. However, the interrelationship of these risk factors during the course and development of renal dysfunction has not been fully elucidated.
View Article and Find Full Text PDFPurpose: We evaluated the effects of the highly selective phosphodiesterase type 5 inhibitor avanafil on electroretinogram and hemodynamics in dogs, and compared the effects with those of sildenafil.
Materials And Methods: Three experiments were performed in anesthetized dogs, including determination of the 1) influence on electroretinogram induced by a light adapted 30 Hz flicker stimulation, 2) direct hemodynamic changes and 3) potentiation of nitroglycerin induced hypotension. Avanafil was administered at doses that were pharmacologically equipotent to or higher than those of sildenafil for penile tumescence.
Purpose: We investigated the in vitro inhibitory effects of avanafil, a novel, potent inhibitor of phosphodiesterase-5, on 11 phosphodiesterases. We also studied its potentiation of penile tumescence in dogs.
Materials And Methods: Phosphodiesterase assay was done with the 4 phosphodiesterase-5 inhibitors avanafil, sildenafil, vardenafil and tadalafil using 11 phosphodiesterase isozymes.
Myocardial infarction (MI) leading to myocardial cell loss represents one of the common causes leading to cardiac failure. We have previously demonstrated the beneficial effects of several potent soluble epoxide hydrolase (sEH) inhibitors in cardiac hypertrophy. sEH catalizes the conversion of epoxyeicosatrienoic acids (EETs) to form the corresponding dihydroxyeicosatrienoic acids (DHETs).
View Article and Find Full Text PDFT-0156 (2-(2-methylpyridin-4-yl)methyl-4-(3,4,5-trimethoxyphenyl)-8-(pyrimidin-2-yl)methoxy-1,2-dihydro-1-oxo-2,7-naphthyridine-3-carboxylic acid methyl ester hydrochloride) is a newly synthesized phosphodiesterase type 5 inhibitor, and its potency and selectivity are higher than those of sildenafil in an enzyme assay. In the present study with anesthetized dogs, we examined the effects of intravenous T-0156 or sildenafil on the pelvic nerve stimulation-induced penile tumescence and light-adapted flicker stimulation-induced electroretinogram, parameters of which are reported to be indicators for inhibition of phosphodiesterase type 5 and type 6, respectively. Both compounds potentiated the penile tumescence in a dose-dependent manner.
View Article and Find Full Text PDFThe enzymological and pharmacological properties of 2-(2-Methylpyridin-4-yl)methyl-4-(3,4,5-trimethoxyphenyl)-8-(pyrimidin-2-yl)methoxy-1,2-dihydro-1-oxo-2,7-naphthyridine-3-carboxylic acid methyl ester hydrochloride (T-0156), a new phosphodiesterase type 5 inhibitor, were studied in vitro and in vivo. The inhibitory effects of T-0156 on six phosphodiesterase isozymes isolated from canine tissues were investigated. T-0156 specifically inhibited the hydrolysis of cyclic guanosine monophosphate (cGMP) by phosphodiesterase type 5, at low concentration (IC(50)=0.
View Article and Find Full Text PDFThe vasorelaxant effects of sildenafil and T-1032 [methyl-2-(4-aminophenyl)-1,2-dihydro-1-oxo-7-(2-pyridinylmethoxy)-4-(3,4,5-trimethoxyphenyl)-3-isoquinoline carboxylate sulfate], two phosphodiesterase type 5 inhibitors, were examined in the isolated rat aorta. Sildenafil and T-1032, both of which have almost the same potency and selectivity regarding phosphodiesterase type 5 inhibitory activity, produced a similar, moderate, relaxation at 10(-10) to 10(-7) M (sildenafil: 66.8 +/- 13.
View Article and Find Full Text PDF