Cerebral computed tomography perfusion (CTP) imaging requires complete acquisition of contrast bolus inflow and washout in the brain parenchyma; however, time truncation undoubtedly occurs in clinical practice. To overcome this issue, we proposed a three-dimensional (two-dimensional + time) convolutional neural network (CNN)-based approach to predict missing CTP image frames at the end of the series from earlier acquired image frames. Moreover, we evaluated three strategies for predicting multiple time points.
View Article and Find Full Text PDFPurpose: Accurate body weight measurement is essential to promote computed tomography (CT) dose optimization; however, body weight cannot always be measured prior to CT examination, especially in the emergency setting. The aim of this study was to investigate whether deep learning-based body weight from chest CT scout images can be an alternative to actual body weight in CT radiation dose management.
Methods: Chest CT scout images and diagnostic images acquired for medical checkups were collected from 3601 patients.
Accurate body weights are not necessarily available in routine clinical practice. This study aimed to investigate whether body weight can be predicted from chest radiographs using deep learning. Deep-learning models with a convolutional neural network (CNN) were trained and tested using chest radiographs from 85,849 patients.
View Article and Find Full Text PDFConsistent cross-sectional imaging is desirable to accurately detect lesions and facilitate follow-up in head computed tomography (CT). However, manual reformation causes image variations among technologists and requires additional time. We therefore developed a system that reformats head CT images at the orbitomeatal (OM) line and evaluated the system performance using real-world clinical data.
View Article and Find Full Text PDF