Publications by authors named "Hidekatsu Tazawa"

In biological analysis and medical diagnosis, there is an increasing demand for improving the lower detection limit without deteriorating the quantitativity; however, it is usually challenging. In this study, we utilized a cyclone flow device and established a liquid concentration method. An air cyclone flow induced a liquid cyclone flow in the concentration devices and enhanced the air/liquid interface area, which allowed an effective concentration of liquid from mL to mL at room temperature.

View Article and Find Full Text PDF

Highly sensitive quantitative analysis of liquids is required in various fields. Analytical instruments and devices such as chromatography, spectroscopic analysis, DNA sequencers, immunoassay, mass spectrometry, and microfluidic devices are utilized for this purpose. Typically, the sample volume is at the milliliter scale, while the analysis volume is at the microliter scale.

View Article and Find Full Text PDF

The demand for multi-point water quality monitoring is increasing to solve the global problem of safe drinking water supply and environmental water contamination by industries. Therefore, compact devices are needed for on-site water quality analysis. On-site devices require low cost and high durability because they are placed outdoors, exposing them to strong ultraviolet rays and a wide range of temperatures.

View Article and Find Full Text PDF

Induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) can contribute to elucidating the pathogenesis of heart and vascular diseases and developing their treatments. Their precise characteristics in fluid flow however remain unclear. Therefore, the aim of the present study is to characterise these features.

View Article and Find Full Text PDF

In this study, we developed an integrated, low-cost microfluidic cell culture system that is easy to use. This system consists of a disposable polystyrene microchip, a polytetrafluoroethylene valve, an air bubble trap, and an indium tin oxide temperature controller. Valve pressure resistance was validated with a manometer to be 3 MPa.

View Article and Find Full Text PDF

Endothelial damage induced by a highly elevated body temperature is crucial in some diseases including viral hemorrhagic fevers. Here, we report the heat-induced sequential changes of endothelial cells under shear stress, which were determined with a microfluidic culture system. Although live cell imaging showed only minor changes in the appearance of heat-treated cells, Hsp70 mRNA expression analysis demonstrated that the endothelial cells in channels of the system responded well to heat treatment.

View Article and Find Full Text PDF

The purpose of the present study was to examine the in vitro effects of low-dose cadmium (Cd) on developing cortical cells. The cortical cells removed from fetuses (embryonic day 15) were treated with 10nM of Cd for 24h. The effects of Cd on dendritic and synaptic development were immunocytochemically observed with anti-microtubule associated protein-2 (MAP2) and anti-synapsin I antibodies, respectively.

View Article and Find Full Text PDF

We developed a rapid sample preparation method for the toxicological analysis of methamphetamine and amphetamine (the major metabolite of methamphetamine) in human hair by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), to facilitate fast screening and quantitation. Two milligrams of hair were mechanically micropulverized for 5 min in a 2-ml plastic tube together with 100 microl of an aqueous solvent containing 10% acetonitrile, 100 mM trifluoroacetic acid and the corresponding deuterium analogues as internal standards. The pulverizing highly disintegrated the hair components, simultaneously allowing the extraction of any drugs present in the hair.

View Article and Find Full Text PDF