Publications by authors named "Hidefumi Miyata"

Effects of a negative supercoil on the local denaturation of the DNA double helix were studied at the single-molecule level. The local denaturation in λDNA and λDNA containing the SV40 origin of DNA replication (SV40ori-λDNA) was directly observed by staining single-stranded DNA regions with a fusion protein comprising the ssDNA binding domain of a 70-kDa subunit of replication protein A and an enhanced yellow fluorescent protein (RPA-YFP) followed by staining the double-stranded DNA regions with YOYO-1. The local denaturation of λDNA and SV40ori-λDNA under a negative supercoil state was observed as single bright spots at the single-stranded regions.

View Article and Find Full Text PDF

T7 Exonuclease (T7 Exo) DNA digestion reactions were studied using direct single-molecule observations in microflow channels. DNA digestion reactions were directly observed by staining template DNA double-stranded regions with SYTOX Orange and staining single-stranded (digested) regions with a fluorescently labeled ssDNA-recognizing peptide (ssBP-488). Sequentially acquired photographs demonstrated that a double-stranded region monotonously shortened as a single-stranded region monotonously increased from the free end during a DNA digestion reaction.

View Article and Find Full Text PDF

Using a single-stranded region tracing system, single-molecule DNA synthesis reactions were directly observed in microflow channels. The direct single-molecule observations of DNA synthesis were labeled with a fusion protein consisting of the ssDNA-binding domain of a 70-kDa subunit of replication protein A and enhanced yellow fluorescent protein (RPA-YFP). Our method was suitable for measurement of DNA synthesis reaction rates with control of the ssλDNA form as stretched ssλDNA (+flow) and random coiled ssλDNA (-flow) via buffer flow.

View Article and Find Full Text PDF

We developed two labeling methods for the direct observation of single-stranded DNA (ssDNA), using a ssDNA binding protein and a ssDNA recognition peptide. The first approach involved protein fusion between the 70-kDa ssDNA-binding domain of replication protein A and enhanced yellow fluorescent protein (RPA-YFP). The second method used the ssDNA binding peptide of Escherichia coli RecA labeled with Atto488 (ssBP-488; Atto488-IRMKIGVMFGNPETTTGGNALKFY).

View Article and Find Full Text PDF