Publications by authors named "Hideaki Mabashi-Asazuma"

Glycoproteins are difficult to crystallize because they have heterogeneous glycans composed of multiple monosaccharides with considerable rotational freedom about their O-glycosidic linkages. Crystallographers studying N-glycoproteins often circumvent this problem by using β1,2-N-acetylglucosaminyltransferase I (MGAT1)-deficient mammalian cell lines, which produce recombinant glycoproteins with immature N-glycans. These glycans support protein folding and quality control but can be removed using endo-β-N-acetylglucosaminidase H (Endo H).

View Article and Find Full Text PDF

We previously reported that IF7 peptide, which binds to the annexin A1 (ANXA1) N-terminus, functions as a tumor vasculature-targeted drug delivery vehicle after intravenous injection. To enhance IF7 stability in vivo, we undertook mirror-image peptide phage display using a synthetic D-peptide representing the ANXA1 N-terminus as target. We then identified peptide sequences, synthesized them as D-amino acids, and designated the resulting peptide dTIT7, which we showed bound to the ANXA1 N-terminus.

View Article and Find Full Text PDF

Background: Annexin A1 is expressed specifically on the tumour vasculature surface. Intravenously injected IF7 targets tumour vasculature via annexin A1. We tested the hypothesis that IF7 overcomes the blood-brain barrier and that the intravenously injected IF7C(RR)-SN38 eradicates brain tumours in the mouse.

View Article and Find Full Text PDF

Nonalcoholic fatty liver disease (NAFLD) is one of the most common causes of chronic liver disease, sometimes ranges from simple steatosis to nonalcoholic steatohepatitis (NASH). Various hits including excessive hepatic steatosis, oxidative stress, apoptosis, and inflammation, contribute to NASH development. Gallic acid (GA), a natural polyphenol, was reported to exert a protective effect on hepatic steatosis in animal models, but the precise molecular mechanisms remain unclear.

View Article and Find Full Text PDF

Studies investigating the effect of the caudal-type homeobox protein 2 (Cdx2) polymorphism in the vitamin D receptor gene and calcium intake on bone mass have shown inconsistent results. This study investigated whether the effect of calcium intake on peak bone mass is affected by Cdx2 polymorphism in young Japanese women. A cross-sectional study of 500 young women was conducted.

View Article and Find Full Text PDF

Estrogen-related receptor (ERR)α regulates genes involved in fatty acid oxidation (FAO) and oxidative phosphorylation (OXPHOS) in muscle. The soy isoflavone daidzein was reported to be a putative ERRα activator, but little is known about its effects on gene expression and FA metabolism. This study aimed to clarify whether daidzein affects FAO- and OXPHOS-related genes thereby modulating intracellular FA metabolism in muscle cells.

View Article and Find Full Text PDF

Objectives: Sleep and diet are important lifestyle factors for maintaining health. Although previous studies have suggested that sleep quality may be associated with specific nutrient and food intakes, the relationship between nutritional adequacy and sleep quality remains unclear. The purpose of this study was to examine the relationship between sleep quality (insomnia symptoms) and adequate nutrient intake among Japanese adults.

View Article and Find Full Text PDF

The baculovirus-insect cell system (BICS) has been widely used to produce many different recombinant proteins for basic research and is being used to produce several biologics approved for use in human or veterinary medicine. Early BICS were technically complex and constrained by the relatively primordial nature of insect cell protein glycosylation pathways. Since then, recombination has been used to modify baculovirus vectors-which has simplified the system-and transform insect cells, which has enhanced its protein glycosylation capabilities.

View Article and Find Full Text PDF

Fused lobes (FDL) is an enzyme that simultaneously catalyzes a key trimming reaction and antagonizes elongation reactions in the insect N-glycan processing pathway. Accordingly, FDL function accounts, at least in part, for major differences in the N-glycosylation patterns of glycoproteins produced by insect and mammalian cells. In this study, we used the CRISPR-Cas9 system to edit the fdl gene in Drosophila melanogaster S2 cells.

View Article and Find Full Text PDF

The silkworm silk glands are powerful secretory organs that can produce and secrete proteins at high levels. As such, it has been suggested that the biosynthetic and secretory power of the silk gland can be harnessed to produce and secrete recombinant proteins in tight or loose association with silk fibers. However, the utility of the silkworm platform is constrained by the fact that it has a relatively primitive protein N-glycosylation pathway, which produces relatively simple insect-type, rather than mammalian-type N-glycans.

View Article and Find Full Text PDF

Insect systems, including the baculovirus-insect cell and Drosophila S2 cell systems are widely used as recombinant protein production platforms. Historically, however, no insect-based system has been able to produce glycoproteins with human-type glycans, which often influence the clinical efficacy of therapeutic glycoproteins and the overall structures and functions of other recombinant glycoprotein products. In addition, some insect cell systems produce N-glycans with immunogenic epitopes.

View Article and Find Full Text PDF

β1,4-galactosyltransferase I (B4GALT1) is a Golgi-resident enzyme that elongates glycoprotein glycans, but a subpopulation of this enzyme is secreted following proteolytic cleavage in its stem domain. We hypothesized that engineering B4GALT1 to block cleavage and secretion would enhance its retention and, therefore, its function. To test this hypothesis, we replaced the cytoplasmic/transmembrane/stem (CTS) domains of B4GALT1 with those from human α1,3-fucosyltransferase 7 (FUT7), which is not cleaved and secreted.

View Article and Find Full Text PDF

Ion transport peptide (ITP) and its alternatively spliced variant, ITP-like (ITPL), are insect peptides that belong to the crustacean hyperglycemic hormone family. These peptides modulate the homeostatic mechanisms for regulating energy metabolism, molting, and reproduction and are specifically conserved in ecdysozoans. Many of the details of the molecular mechanisms by which crustacean hyperglycemic hormone family peptides exert pleiotropy remain to be elucidated, including characterization of their receptors.

View Article and Find Full Text PDF

Glycosylation is an important attribute of baculovirus-insect cell expression systems, but some insect cell lines produce core α1,3-fucosylated N-glycans, which are highly immunogenic and render recombinant glycoproteins unsuitable for human use. To address this problem, we exploited a bacterial enzyme, guanosine-5'-diphospho (GDP)-4-dehydro-6-deoxy-d-mannose reductase (Rmd), which consumes the GDP-l-fucose precursor. We expected this enzyme to block glycoprotein fucosylation by blocking the production of GDP-l-fucose, the donor substrate required for this process.

View Article and Find Full Text PDF

Insect cells are widely used for recombinant glycoprotein production, but they cannot provide the glycosylation patterns required for some biotechnological applications. This problem has been addressed by genetically engineering insect cells to express mammalian genes encoding various glycoprotein glycan processing functions. However, for various reasons, the impact of a mammalian cytosine-5'-monophospho (CMP)-sialic acid transporter has not yet been examined.

View Article and Find Full Text PDF

The inability to produce recombinant glycoproteins with authentic N-glycans is a limitation of many heterologous protein expression systems. In the baculovirus-insect cell system, this limitation has been addressed by glycoengineering insect cell lines with mammalian genes encoding protein N-glycosylation functions ("glycogenes") under the transcriptional control of constitutive promoters. However, a potential problem with this approach is that the metabolic load imposed by the expression of multiple transgenes could adversely impact the growth and/or stability of glycoengineered insect cell lines.

View Article and Find Full Text PDF