Publications by authors named "Hideaki Kuribayashi"

Article Synopsis
  • Pharmacotherapy exhibits significant variations in how different individuals process and respond to drugs, affecting both their effectiveness and the likelihood of side effects.
  • Recent advances in genetic research have identified genetic polymorphisms as key factors contributing to these differences, offering potential for tailored treatments.
  • Regulatory guidelines have emerged in the EU and US to facilitate the integration of pharmacogenomic data into drug development, as demonstrated by Tohoku University's research on genetic variations in drug metabolism within Japanese populations.
View Article and Find Full Text PDF

The pregnane X receptor (PXR) is well-known as a key regulator of drug/xenobiotic clearance. Upon activation by ligand, PXR transcriptionally upregulates the expression of drug-metabolizing enzymes and drug transporters. Recent studies have revealed that PXR also plays a role in regulating immune/inflammatory responses.

View Article and Find Full Text PDF

The ileal apical sodium-dependent bile acid transporter (ASBT or SLC10A2) has a crucial role in intestinal bile acid absorption. We previously reported that enterobacteria-mediated bile acid conversion was involved in the alteration of ileal ASBT expression levels. In the present study, to investigate the hypothesis that ileal ASBT protein levels are post-translationally regulated by enterobacteria-associated bile acids, alteration of ileal ASBT protein levels was analysed in mice 12 h and 24 h after anti-bacterial drug ampicillin (ABPC) treatment (100 mg/kg, single shot) that altered bile acid composition in the intestinal lumen.

View Article and Find Full Text PDF

Enterobacteria are known to deconjugate amino acid-conjugated bile acids in the intestine. Administration of ampicillin (ABPC; 3 days, 100mg/kg) decreased the expression of ileal farnesoid X receptor (Fxr) target genes, and increased the levels of total bile acids in the intestinal lumen. The primary tauro-conjugates of cholic acid (TCA) and beta-muricholic acid (TβMCA) levels were increased, whereas the primary unconjugates, cholic acid (CA) and beta-muricholic acid (βMCA), levels decreased to below detectable levels (<0.

View Article and Find Full Text PDF

In our study, ampicillin (AMP)-mediated decrease of enterobacteria caused increases in hepatic bile acid concentration through (at least in part) elevation of bile acid synthesis in C57BL/6N mice. We investigated the involvement of enterobacteria on intestinal bile acid absorption in AMP-treated mice in the present study. Fecal enterobacterial levels and fecal bile acid excretion rates were markedly decreased in mice treated with AMP (100 mg/kg) for 3 days, whereas bile acid concentrations in portal blood were significantly increased compared with those in mice treated with a vehicle.

View Article and Find Full Text PDF

Administration of the antibacterial drug ampicillin (ABPC) significantly increased hepatic bile acid concentrations. In the present study, we investigated the mechanisms for the elevation of bile acid levels in ABPC-treated mice. Hepatic microsomal cholesterol 7alpha-hydroxylation and CYP7A1 mRNA level were increased 2.

View Article and Find Full Text PDF