The basidiomycetous yeast Pseudozyma tsukubaensis produces a mannosylerythritol lipid (MEL) homologue, a diastereomer type of MEL-B, from olive oil. In a previous study, MEL-B production was increased by the overexpression of lipase PaLIPAp in P. tsukubaensis 1E5, through the enhancement of oil consumption.
View Article and Find Full Text PDFMicrobiol Resour Announc
December 2021
The basidiomycetous yeast Ustilago shanxiensis CBS 10075, which was isolated from a wilting leaf in China, produces mannosylerythritol lipid (MEL) biosurfactants. Here, we report the draft genome sequence of U. shanxiensis CBS 10075, which was 21.
View Article and Find Full Text PDFInsecticide resistance is one of the most serious problems in contemporary agriculture and public health. Although recent studies revealed that insect gut symbionts contribute to resistance, the symbiont-mediated detoxification process remains unclear. Here we report the in vivo detoxification process of an organophosphorus insecticide, fenitrothion, in the bean bug Riptortus pedestris.
View Article and Find Full Text PDFThe yeast Pseudozyma antarctica (currently designated Moesziomyces antarcticus) secretes a xylose-induced biodegradable plastic-degrading enzyme (PaE). To suppress degradation of PaE during production and storage, we targeted the inhibition of proteolytic enzyme activity in P. antarctica.
View Article and Find Full Text PDFMannosylerythritol lipids (MELs) are glycolipid biosurfactants produced by various yeasts. Mmf1, a putative transporter of MELs, is conserved in the MEL biosynthesis gene clusters of diverse MEL producers, including the genera Ustilago, Pseudozyma, Moesziomyces, and Sporisorium. To clarify the function of Mmf1, we generated the gene-deleted strain of P.
View Article and Find Full Text PDFPseudozyma antarctica is a nonpathogenic phyllosphere yeast known as an excellent producer of industrial lipases and mannosylerythritol lipids (MELs), which are multi-functional glycolipids. The fungus produces a much higher amount of MELs from vegetable oil than from glucose, whereas its close relative, Ustilago maydis UM521, produces a lower amount of MELs from vegetable oil. In the present study, we used previous gene expression profiles measured by DNA microarray analyses after culturing on two carbon sources, glucose and soybean oil, to further characterize MEL biosynthesis in P.
View Article and Find Full Text PDFBackground: Aspergillus oryzae, a useful industrial filamentous fungus, produces limited varieties of secondary metabolites, such as kojic acid. Thus, for the production of valuable secondary metabolites by genetic engineering, the species is considered a clean host, enabling easy purification from cultured cells. A.
View Article and Find Full Text PDFLevulinic acid (LA) is a building block alternative to fermentable sugars derived from cellulosic biomass. Among LA catabolic processes in Pseudomonas putida KT2440, ligation of coenzyme A (CoA) to LA by levulinyl-CoA synthetase (LvaE) is known to be an initial enzymatic step in LA metabolism. To identify the genes involved in the first step of LA metabolism in Pseudomonas citronellolis LA18T, RNA-seq-based comparative transcriptome analysis was carried out for LA18T cells during growth on LA and pyruvic acid.
View Article and Find Full Text PDFThe basidiomycetous yeast Pseudozyma antarctica (currently designated Moesziomyces antarcticus) produces extracellular enzymes and glycolipids, including mannosylerythritol lipids (MELs), which are biosurfactants. Strain GB-4(0) of this species was previously isolated from rice husks and produces biodegradable plastic-degrading enzyme (Pseudozyma antarctica esterase; PaE). In this study, we generated a MEL biosynthesis-deficient strain (∆PaEMT1) by deleting the gene PaEMT1, which is essential to MEL biosynthesis in strain GB-4(0).
View Article and Find Full Text PDFAlthough metagenomics researches have illuminated microbial diversity in numerous biospheres, understanding individual microbial functions is yet difficult due to the complexity of ecosystems. To address this issue, we applied a metagenome-independent, de novo assembly-based metatranscriptomics to a complex microbiome, activated sludge, which has been used for wastewater treatment for over a century. Even though two bioreactors were operated under the same conditions, their performances differed from each other with unknown causes.
View Article and Find Full Text PDFThe basidiomycetous yeast GB-4(0) esterase (PaE) is a promising candidate for accelerating degradation of used biodegradable plastics (BPs). To increase safety and reduce costs associated with the use of PaE, we constructed a self-cloning strain with high-PaE productivity. A Lys12 gene (Pa)-deleted lysine auxotroph strain GB4-(0)-L1 was obtained from GB-4(0) by ultraviolet mutagenesis and nystatin enrichment.
View Article and Find Full Text PDFMicrobiol Resour Announc
August 2018
Pseudomonas citronellolis LA18T catabolizes levulinic acid (LA) from cellulosic biomass hydrolysate via acetyl-coenzyme A (acetyl-CoA) and propionyl-CoA. This study reports the 7.22-Mbp draft genome sequence of P.
View Article and Find Full Text PDFMannosylerythritol lipids (MELs) are biosurfactants produced from feedstocks by basidiomycetous yeasts. MELs exhibit different properties depending on their structures, such as the degree of acetylation or acylation and the chirality of the mannosylerythritol moiety. Pseudozyma tsukubaensis produces a diastereomer type of MEL-B (mono-acetylated MEL); therefore, deletion of an acetyltransferase could yield a diastereomer type of MEL-D (deacetylated MEL), which has only been produced in in vitro reactions of lipase using MEL-B as a substrate.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
August 2018
Mannosylerythritol lipids (MELs) are a type of glycolipid biosurfactant produced by basidiomycetous yeasts, most notably those belonging to the genera Pseudozyma and Ustilago. Mannosylerythritol lipids are environmentally friendly and possess many unique functions, such as gene delivery, bio-activation, and human skin repair, and thus have potential applications in cosmetic, pharmaceutical, agriculture, food, and environmental industries. However, MELs will require overcoming same issues related to the commercialization, e.
View Article and Find Full Text PDFThe basidiomycetous yeast genus Pseudozyma produce large amounts of mannosylerythritol lipids (MELs), which are biosurfactants. A few Pseudozyma strains produce mono-acylated MEL as a minor compound using excess glucose as the sole carbon source. Mono-acylated MEL shows higher hydrophilicity than di-acylated MEL and has great potential for aqueous applications.
View Article and Find Full Text PDFBasidiomycetous yeasts in the genus Pseudozyma are known to produce extracellular glycolipids called mannosylerythritol lipids (MELs). Pseudozyma tsukubaensis produces a large amount of MEL-B using olive oil as the sole carbon source (> 70 g/L production). The MEL-B produced by P.
View Article and Find Full Text PDFThe basidiomycetous yeast Pseudozyma antarctica is a remarkable producer of industrially valuable enzymes and extracellular glycolipids. In this study, we developed a method for targeted gene replacement in P. antarctica.
View Article and Find Full Text PDFHere, we report a draft genome sequence of strain Dfr2, a ferric iron-reducing bacterium. This genome information will further our understanding of the mechanisms underlying electron transfer from microorganisms to ferric iron oxides.
View Article and Find Full Text PDFFree fatty acids (FFAs) are useful for generating biofuel compounds and functional lipids. Microbes are increasingly exploited to produce FFAs via metabolic engineering. However, in many microorganisms, FFAs accumulate in the cytosol, and disrupting cells to extract them is energy intensive.
View Article and Find Full Text PDFLevulinic acid (LA) is produced by the catalytic conversion of a variety of woody biomass. To investigate the potential use of desalting electrodialysis (ED) for LA purification, electrodialytic separation of levulinate from both reagent and cedar-derived LA solution (40-160 g L ) was demonstrated. When using reagent LA solution with pH5.
View Article and Find Full Text PDFParaphoma sp. B47-9 is a producer of a biodegradable plastic-degrading enzyme. Here, we report the draft genome sequence of this strain.
View Article and Find Full Text PDFAwamori is a traditional distilled beverage made from steamed Thai-Indica rice in Okinawa, Japan. For brewing the liquor, two microbes, local kuro (black) koji mold Aspergillus luchuensis and awamori yeast Saccharomyces cerevisiae are involved. In contrast, that yeasts are used for ethanol fermentation throughout the world, a characteristic of Japanese fermentation industries is the use of Aspergillus molds as a source of enzymes for the maceration and saccharification of raw materials.
View Article and Find Full Text PDFBurkholderia stabilis LA20W produces trehalose using levulinic acid (LA) as a substrate. Here, we report the 7.97-Mb draft genome sequence of B.
View Article and Find Full Text PDFMannosylerythritol lipids (MELs) belong to the glycolipid biosurfactants and are produced by various fungi. The basidiomycetous yeast Pseudozyma tsukubaensis produces diastereomer type of MEL-B, which contains 4-O-β-D-mannopyranosyl-(2R,3S)-erythritol (R-form) as the sugar moiety. In this respect it differs from conventional type of MELs, which contain 4-O-β-D-mannopyranosyl-(2S,3R)-erythritol (S-form) as the sugar moiety.
View Article and Find Full Text PDFThe fungal strain B47-9, isolated from barley, was previously selected as an effective degrader of various biodegradable plastic (BP) films such as poly(butylene succinate-co-adipate) (PBSA) and poly(butylene succinate) (PBS). The strain has not been identified based on mycological methods because it does not form fruiting bodies, which are the key to morphological identification. Here, we performed molecular phylogenetic analyses of the nuclear ribosomal RNA gene regions and their internal transcribed spacer region of B47-9 and related fungi.
View Article and Find Full Text PDF