Publications by authors named "Hideaki Hagihara"

In this study, a new system was developed to carry out simultaneous near-infrared (NIR) and small-angle X-ray scattering (SAXS) measurements. Aged polypropylene (PP) was examined with the NIR-SAXS system to demonstrate how it can be utilized to derive pertinent information about the polymer structure. Pairs of SAXS profiles and NIR spectra of PP in its initial state and after aging were measured to derive an in-depth understanding of the aging phenomenon.

View Article and Find Full Text PDF

This study introduces a novel method that utilizes evolved gas analysis with time-of-flight mass spectrometry (EGA-TOFMS) coupled with principal component analysis (PCA) and Kendrick mass defect (KMD) analysis, called EGA-PCA-KMD, to analyze complex structural changes in polymer materials during thermo-oxidative degradation. While EGA-TOFMS captures exact mass data related to the degradation components in the temperature-dependent mass spectra of the evolved products, numerous high-resolution mass spectra with large amounts of ion signals and varying intensities provide challenges for interpretation. To address this, we employed mathematical decomposition through PCA to selectively extract information about the ion series specific to the products that evolved from the degradation components.

View Article and Find Full Text PDF

A technique for analyzing infrared imaging data based on two-trace two-dimensional (2T2D) correlation analysis is presented to extract pertinent information underlying spectroscopic imaging data. In 2T2D correlation mapping, each spectrum in hyperspectral data is individually compared with a reference spectrum to generate 2T2D asynchronous correlation intensity at the - and -coordinates on a 2T2D correlation map. Asynchronous correlation intensity develops only when the signal contribution from a certain species becomes even more significant in the sample spectrum compared with the reference spectrum.

View Article and Find Full Text PDF

We have developed a novel rheo-optical Fourier-transform infrared (FTIR) imaging technique that can probe the molecular-scale deformation behavior of a polymer matrix in composite materials. This rheo-optical FTIR imaging is based on -polarized FTIR imaging of a polymer sample while it is being deformed by mechanical force. This imaging technique readily captures the orientation of the polymer molecules resulting from the applied strain.

View Article and Find Full Text PDF

Simultaneous improvement in the mechanical properties and lifetime of polymer nanocomposites is crucially significant to further extend the versatility of polymer materials and reduce environmental impact. In this study, we fabricated reinforced polypropylene (PP)-based nanocomposites with improved aging stability by the addition of surface-modified well-ordered silica nanospheres with a silane coupling agent (SCA) containing hindered phenol antioxidant as a filler. Uniform grafting of the SCA on the filler surface contributed to homogeneous dispersion of the filler into the matrix, leading to improved properties (e.

View Article and Find Full Text PDF

A rheo-optical characterization technique based on the combination of near-infrared (NIR) spectroscopy and mechanical analysis was applied to the nanocomposite consisting of hydroxyl-functionalized polypropylene (PPOH) and mesoporous silica (MPS) to probe the deformation behavior. Substantial levels of spectral changes of NIR spectral features were captured when the polymer samples underwent tensile deformation. Sets of spectra were subjected to projection treatment to remove the effect of baseline fluctuations and thickness change inevitably caused by the tensile deformation of the sample.

View Article and Find Full Text PDF

A quick method involving the control of heat and water vapor pressure for preparing moisture-saturated carbon fiber-reinforced plastics (CFRP, 8 unidirectional prepreg layers, 1.5 mm thickness, epoxy resin) has been developed. The moisture-saturated CFRP sample was obtained at 120 °C and 0.

View Article and Find Full Text PDF