Publications by authors named "Hicham Oudghiri-Hassani"

The characterization of lignocellulosic biomass present in archaeological wood is crucial for understanding the degradation processes affecting wooden artifacts. The lignocellulosic fractions in both the external and internal parts of Moroccan archaeological cedar wood (9th, 12th, and 21st centuries) were characterized using infrared spectroscopy (FTIR-ATR deconvolution mode), X-ray diffraction (XRD), and SEM analysis. The XRD demonstrates a significant reduction in the crystallinity index of cellulose from recent to aging samples.

View Article and Find Full Text PDF

Porous clay heterostructures are a hybrid precursor between the pillaring process and organoclays. In this study, the organoclay was substituted by an aluminium intercalated species clay or pillared alumina clays. A porous clay heterostructure was successfully achieved from an aluminium intercalated species clay, due to the easy exchange of the aluminium species by the cosurfactant and silica species.

View Article and Find Full Text PDF

Removing methylene blue (MB) dye from aqueous solutions was examined by the use of nickel molybdate (α-NiMoO) as an adsorbent produced by an uncomplicated, rapid, and cost-effective method. Different results were produced by varying different parameters such as the pH, the adsorbent dose, the temperature, the contact time, and the initial dye concentration. Adsorbent dose and pH had a major removal effect on MB.

View Article and Find Full Text PDF

The present study investigated iron molybdate (Fe(MoO)), synthesized via a simple method, as a nanosorbent for methylene blue (MB) dye removal from aqueous solutions. Investigations of the effects of several parameters like contact time, adsorbent dose, initial dye concentration, temperature and pH were carried out. The results showed that MB removal was affected, significantly, by adsorbent dose and pH.

View Article and Find Full Text PDF

The effect of the counteranion of hexadecyltrimethylammonium salts on the physico-chemical properties of organoclays was investigated, using a selected natural clay mineral with a cation exchange capacity of 95 meq/100 g. The uptake amount of C cations was dependent on the hexadecyltrimethylammonium (C) salt solution used, the organoclay prepared from CBr salt solution exhibited a value of 1. 05 mmole/g higher than those prepared from CCl and COH salt solutions.

View Article and Find Full Text PDF

The organo-clays (OCs) were prepared by a cation exchange reaction between surfactant (cetyltrimethylammonium, C16TMA) from different counterions (Bromide, Chloride, and Hydroxide). The effect of the counterions was investigated on the physico-chemical properties of the prepared organo-clays. The highest uptake of organic cations (1.

View Article and Find Full Text PDF

Nano Molybdenum trioxide (α-MoO₃) was synthesized in an easy and efficient approach. The removal of methylene blue (MB) in aqueous solutions was studied using this material. The effects of various experimental parameters, for example contact time, pH, temperature and initial MB concentration on removal capacity were explored.

View Article and Find Full Text PDF

Na-magadiite exchanged with cetyl-trimethylammonium cations provided organophilic silicate materials that allowed for the effective removal of the acidic dye "eosin". The organic cations were intercalated into the interlayer spacing of the layered silicate via an exchange reaction between the organic cations from their bromide salt and the solid Na-magadiite at room temperature. Different techniques were used to characterize the effect of the initial concentration of the surfactant on the structure of the organo-magadiites.

View Article and Find Full Text PDF

The aim of this work was to investigate the use of modified nigella sativa seeds (MNS) for removing of methylene blue (MB) dye from aqueous solution. The nigella sativa (NS) seeds have been pre-treated at different temperatures and periods of time. The maximum adsorption of MB was achieved using NS sample washed with distilled water pre-heated at 65 °C for one hour, then ground to 250 µm particle size (MNS-4).

View Article and Find Full Text PDF

Zinc molybdate (ZnMoO₄) was prepared by thermal decomposition of an oxalate complex under a controlled temperature of 500 °C. Analyses of the oxalate complex were carried out using Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). On the other hand, analyses of the synthesized zinc molybdate were carried out by X-ray diffraction (XRD), transmission electron microscopy (TEM), and Brunauer-Emmett-Teller technique (BET).

View Article and Find Full Text PDF

Nanostructured β-CoMoO₄ catalysts have been prepared via the thermal decomposition of an oxalate precursor. The catalyst was characterized by infrared spectroscopy (FTIR), X-ray diffraction (XRD), Brunauer-Emmett-Teller method (BET), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). The efficiency of these nanoparticles in the reduction of - and -nitrophenol isomers (2-NP, 3-NP, and 4-NP) to their corresponding aminophenols was tested using UV-visible spectroscopy measurements.

View Article and Find Full Text PDF

Nickel molybdate (NiMoO₄) nanoparticles were synthesized via calcination of an oxalate complex in static air at 500 °C. The oxalate complex was analyzed by thermal gravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR). The as-synthesized nickel molybdate was characterized by Brunauer-Emmett-Teller technique (BET), X-ray diffraction (XRD), and transmission electron microscopy (TEM) and its catalytic efficiency was tested in the reduction reaction of the three-nitrophenol isomers.

View Article and Find Full Text PDF

Atomic nitrogen and oxygen were deposited on beta-Mo(2)C through dissociative adsorption of NO. Reflectance absorbance infrared spectroscopy (RAIRS), thermal desorption, and synchrotron X-ray photoelectron spectroscopy (XPS) measurements were used to investigate the interplay between atomic nitrogen, carbon, and oxygen in the 400-1250 K region. The combination of the high resolution and high surface sensitivity offered by the synchrotron XPS technique was used to show that atomic nitrogen displaces interstitial carbon onto the carbide surface.

View Article and Find Full Text PDF

The electrocatalytic hydrogenation (ECH) of phenol has been studied using palladium supported on gamma-alumina (10% Pd-Al2O3) catalysts. The catalyst powders were suspended in aqueous supporting electrolyte solutions containing methanol and short-chain aliphatic acids (acetic acid, propionic acid, or butyric acid) and were dynamically circulated through a reticulated vitreous carbon cathode. The efficiency of the hydrogenation process was measured as a function of the total electrolytic charge and was compared for different types of supporting electrolyte and for various solvent compositions.

View Article and Find Full Text PDF