Publications by authors named "Hicham Ben Youcef"

The study focus is the valorization of banana agriculture by products by the extraction and derivatization of cellulose and its incorporation in formulations to produce superabsorbent materials endowed with high water absorption performances. The extracted cellulose (BP) was subjected to a controlled oxidation by sodium periodate to convert it to cellulose dialdehyde (DAC) with controlled aldehyde content. The cellulosic materials were incorporated into a suspension containing acrylic acid (AA) and itaconic acid (IA) to produce composite hybrid hydrogels (SA-BP/SA-DAC) by radical chain polymerization in water, using N,N-methylene-bis-acrylamide (MBA) as a cross-linking agent and potassium persulfate (KPS) as an initiator.

View Article and Find Full Text PDF

High-entropy materials (HEMs), including alloys, ceramics and other entropy-stabilized compounds, have attracted considerable attention in different application fields. This is due to their intrinsically unique concept and properties, such as innovative chemical composition, structural characteristics, and correspondingly improved functional properties. By establishing an environment with different chemical compositions, HEMs as novel materials possessing superior attributes present unparalleled prospects when compared with their conventional counterparts.

View Article and Find Full Text PDF

Two eco-friendly and highly efficient adsorbents, namely brushite-chitosan (DCPD-CS), and monetite-chitosan (DCPA-CS) composites were synthesized via a simple and low-cost method and used for tetracycline (TTC) removal. The removal behavior of TTC onto the composite particles was studied considering various parameters, including contact time, pollutant concentration, and pH. The maximum TTC adsorption capacity was 138.

View Article and Find Full Text PDF

This work aims to develop an injectable and antibacterial composite cement for bone substitution and prevention/treatment of bone infections. This cement is composed of calcium phosphate, calcium carbonate, bioactive glass, sodium alginate, and ciprofloxacin. The effect of ciprofloxacin on the microstructure, chemical composition, setting properties, cohesion, injectability, and compressive strength was investigated.

View Article and Find Full Text PDF

Polyurethane foams (PUFs) are a significant group of polymeric foam materials. Thanks to their outstanding mechanical, chemical, and physical properties, they are implemented successfully in a wide range of applications. Conventionally, PUFs are obtained in polyaddition reactions between polyols, diisoycyanate, and water to get a CO foaming agent.

View Article and Find Full Text PDF

Carboxymethyl chitin (CMChit) has the potential to be used as a solid polymer electrolyte (SPE) based on its ionic conductivity value of the order of 10 S·cm in self-standing membranes. In controlled humidity of 65RH%, carboxymethyl chitin based membrane blended with 1-Butyl-3-methylimidazolium acetate (BMIM[Ac]) ionic liquid (IL) (40 wt%) showed a threshold value of ionic conductivity in the order of 10 S·cm and electrochemical stability was up to 2.93 V.

View Article and Find Full Text PDF

A composite based on hydroxyapatite (HA) and chitosan (CS) combined with ciprofloxacin (CIP) was formulated by the solid-liquid mixing method. The optimization of the solid to the liquid ratio and the use of chitosan in a small amount (≤5 wt%) promoted the preparation of stable and rigid monoliths. A synergistic effect of CS and CIP contents on the compressive strength of the CIP-loaded composite was evidenced.

View Article and Find Full Text PDF

Natrium super ionic conductor (NASICON) materials providing attractive properties such as high ionic conductivity and good structural stability are considered as very promising materials for use as electrodes for lithium- and sodium-ion batteries. Herein, a new high-performance electrode material, LiNiTiFe(PO)/C, was synthesized via the sol-gel method and was electrochemically tested as an anode for lithium ion batteries, providing enhanced electrochemical performance as a result of nickel substitution into the lithium site in the LiTi(PO) family of materials. The synthesized material showed good ionic conductivity, excellent structural stability, stable long-term cycling performance, and improved high rate cycling performance compared to LiTi(PO).

View Article and Find Full Text PDF

This work investigates the isolation of cellulose nanocrystals (CNC) from sugarcane bagasse (SCB) waste and the evaluation of their mechanical reinforcement capability for k-carrageenan biopolymer. The results from Atomic Force Microscopy and Transmission Electron Microscopy indicated the successful extraction of CNC from SCB following alkali, bleaching and acid hydrolysis treatments. The CNC displayed a needle-like structure with an average aspect ratio of 55.

View Article and Find Full Text PDF

In the present work, cellulose nanocrystals (CNC) were produced from vine shoots waste using chemical treatments followed by acid hydrolysis process. FTIR analysis confirmed that the non-cellulosic components were progressively removed during the chemical treatments, and the final obtained materials are composed of pure cellulose. AFM and TEM observations showed that the extracted CNC possess a needle-like shape with an average length of 456 nm and an average diameter of 14 nm, giving rise to an average aspect ratio of about 32.

View Article and Find Full Text PDF

Two new cathode materials based on redox organosulfur polymers were synthesized and investigated for rechargeable lithium batteries as a proof-of-concept study. These cathodes offered good cycling performance owing to the absence of polysulfide solubility, which plagues Li/S systems. Herein, an aliphatic polyamine or a conjugated polyazomethine was used as the base to tether the redox-active species.

View Article and Find Full Text PDF