Publications by authors named "Hibbard B"

The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, has evolved resistance to nearly every management tactic utilized in the field. This study investigated the resistance mechanisms in a WCR strain resistant to the Bacillus thuringiensis (Bt) protein eCry3.1Ab using dsRNA to knockdown WCR midgut genes previously documented to be associated with the resistance.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists use special diets to raise insects for research and education.
  • They found that storing these diets at certain temperatures and for certain lengths of time really affects how good the diets are for the insects.
  • The best temperatures for keeping the diets quality high were really cold ones like -20°C and 4°C, which helped the insects grow better over time.
View Article and Find Full Text PDF
Article Synopsis
  • A universal diet formulation, WCRMO-2, supports the growth of southern, western, and northern corn rootworm species effectively, showing superior results compared to specialized diets.
  • After 10 days, larvae on the WCRMO-2 diet demonstrated significant increases in weight and developmental milestones compared to other diets, especially for southern corn rootworm larvae.
  • The adoption of this universal diet can streamline research efforts to study pest resistance and enhance pest control strategies.
View Article and Find Full Text PDF

The northern corn rootworm, Diabrotica barberi Smith & Lawrence (Coleoptera: Chrysomelidae) is a major pest of maize in the United States Corn Belt. Recently, resistance to Bacillus thuringiensis (Bt) maize was reported in North Dakota and increased use of Bt maize hybrids could facilitate resistance evolution in other maize-producing states. In this study, susceptibility to Bt proteins was evaluated in wild D.

View Article and Find Full Text PDF

Western, northern, Mexican, and southern corn rootworms (WCR, NCR, MCR, and SCR) are serious corn pests. We evaluated host search behavior of these pests on six plant species using a video tracking system. After a 5-min exposure to plant roots, behavioral parameters were automatically recorded and used to quantify the search behavior.

View Article and Find Full Text PDF
Article Synopsis
  • Western corn rootworm is a major pest for maize in the U.S. and Europe, showing resistance to traditional pest management methods, which presents a challenge for farmers.
  • Despite extensive breeding efforts over 75 years to develop resistant maize, there are currently no commercially available hybrids with natural resistance, emphasizing the complexity of the issue.
  • A recent study identified 29 genetic loci related to resistance, suggesting that future breeding may need to focus on combining multiple small effect loci to create more resilient maize varieties.
View Article and Find Full Text PDF

Bioassays involving newly hatched larval insects can be limited by the larvae's feeding state. Assays attempting to monitor mortality effects can be negatively affected by starvation effects on the larvae. Neonate western corn rootworms have significant reductions in viability if not provided food within 24 h post hatch.

View Article and Find Full Text PDF

Virus infection activates integrated stress response (ISR) and stress granule (SG) formation and viruses counteract by interfering with SG assembly, suggesting an important role in antiviral defense. The infection of fish cells by Viral Hemorrhagic Septicemia Virus (VHSV), activates the innate immune recognition pathway and the production of type I interferon (IFN). However, the mechanisms by which VHSV interacts with ISR pathway regulating SG formation is poorly understood.

View Article and Find Full Text PDF

The western corn rootworm (WCR) Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) remains one of the economically most important pests of maize (Zea mays) due to its adaptive capabilities to pest management options. This includes the ability to develop resistance to some of the commercial pesticidal proteins originating from different strains of Bacillus thuringiensis. Although urgently needed, the discovery of new, environmentally safe agents with new modes of action is a challenge.

View Article and Find Full Text PDF

Insect resistance to toxins derived from Bacillus thuringiensis (Bt) is a major issue in agriculture. Resistance to Bt has been linked to the loss of toxin binding sites within the insect, changes within the gut microbiota, and midgut tissue regeneration. Histopathological documentation of intoxication and resistance to Bt is lacking for rootworms in the genus Diabrotica (Coleoptera: Chrysomelidae), a major target of Bt corn.

View Article and Find Full Text PDF

The western corn rootworm (WCR), Diabrotica vifgirera virgifera LeConte, (Coleoptera: Chrysomelidae) causes significant economic damage in corn production each year. Resistance to insecticides and transgenic corn with Bacillus thuringiensis (Bt), Berliner toxins have been reported throughout the United States Corn Belt. Corn breeding programs for natural resistance against WCR larvae could potentially assist in rootworm management.

View Article and Find Full Text PDF
Article Synopsis
  • The development of new biopesticides is crucial due to the western corn rootworm’s resistance to existing methods.
  • Testing a non-live preparation of Chromobacterium species Panama (Csp_P) showed it was toxic to various corn rootworm species, including both resistant and susceptible strains.
  • Csp_P demonstrated effectiveness without cross-resistance to current Bt proteins, suggesting it could be a valuable new tool for managing WCR.
View Article and Find Full Text PDF

The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, is the most serious pest of maize (Zea mays L.) in the U.S.

View Article and Find Full Text PDF

Microbial communities associated with animals vary based on both intrinsic and extrinsic factors. Of many possible determinants affecting microbiome composition, host phylogeny, host diet, and local environment are the most important. How these factors interact across spatial scales is not well understood.

View Article and Find Full Text PDF

, an underutilized tropical tree, is being promoted as an alternative food source for meeting the nutritional needs of human and animals. In this study, we have shown that trypsin inhibitors as one of the predominant proteins in the seeds of . DE-52 column chromatography resulted in the identification of four peaks with trypsin inhibitor activity.

View Article and Find Full Text PDF

Unlabelled: Entomopathogenic nematodes (EPN) have great potential as biological control agents against root-feeding insects. They have a rapid and long-lasting mode of action, minimal adverse effects on the environment and can be readily mass-produced. However, they have a relatively short shelf-life and are susceptible to desiccation and UV light.

View Article and Find Full Text PDF

The western corn rootworm (WCR), LeConte, is the most serious pest of maize in the United States. In pursuit of developing a diet free of antibiotics for WCR, we characterized effects of thermal exposure (50-141 °C) and length of exposure on quality of WCRMO-2 diet measured by life history parameters of larvae (weight, molting, and survival) reared on WCRMO-2 diet. Our results indicated that temperatures had non-linear effects on performance of WCRMO-2 diet, and no impacts were observed on the length of time exposure.

View Article and Find Full Text PDF

The northern corn rootworm, Diabrotica barberi Smith & Lawrence, has a univoltine life cycle that typically produces one generation a year. When rearing the northern corn rootworm in the laboratory, in order to break diapause, it is necessary to expose eggs to a five month cold period before raising the temperature. By selective breeding of the small fraction of eggs that hatched without cold within 19-32 days post oviposition, we were able to develop a non-diapausing colony of the northern corn rootworm within five generations of selection.

View Article and Find Full Text PDF

Background: Resistance of pest insect species to insecticides, including B. thuringiensis (Bt) pesticidal proteins expressed by transgenic plants, is a threat to global food security. Despite the western corn rootworm, Diabrotica virgifera virgifera, being a major pest of maize and having populations showing increasing levels of resistance to hybrids expressing Bt pesticidal proteins, the cell mechanisms leading to mortality are not fully understood.

View Article and Find Full Text PDF

The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), poses a serious threat to maize (Zea mays L.) growers in the U.S.

View Article and Find Full Text PDF

Evolution of resistance to transgenic crops producing toxins from Bacillus thuringiensis (Bt) threatens the sustainability of the technology. Examination of resistance mechanisms has largely focused on characterization of mutations in proteins serving as Bt toxin binding sites. However, insect microbial communities have the potential to provide host resistance to pesticides in a myriad of ways.

View Article and Find Full Text PDF

The western corn rootworm, LeConte, is resistant to four separate classes of traditional insecticides, all (Bt) toxins currently registered for commercial use, crop rotation, innate plant resistance factors, and even double-stranded RNA (dsRNA) targeting essential genes via environmental RNA interference (RNAi), which has not been sold commercially to date. Clearly, additional tools are needed as management options. In this review, we discuss the state-of-the-art knowledge about biotic factors influencing herbivore success, including host location and recognition, plant defensive traits, plant-microbe interactions, and herbivore-pathogens/predator interactions.

View Article and Find Full Text PDF

Background: Management of the corn pest, western corn rootworm (WCR), Diabrotica virgifera virgifera (LeConte) (Coleoptera: Chrysomelidae), relies heavily on the planting of transgenic corn expressing toxins produced by the bacterium Bacillus thuringiensis (Bt). This has resulted in the evolution of resistance to all of the four commercially available Bt toxins targeting coleopteran insects. In this study, we evaluated the susceptibility of a Cry34/35Ab1-resistant WCR colony in seedling and diet toxicity assays after removal from selection for six and nine generations.

View Article and Find Full Text PDF

This study describes three closely related proteins, cloned from strains, that are lethal upon feeding to LeConte, the western corn rootworm (WCR). Mpp75Aa1, Mpp75Aa2 and Mpp75Aa3 were toxic to WCR larvae when fed purified protein. Transgenic plants expressing each mMpp75Aa protein were protected from feeding damage and showed significant reduction in adult emergence from infested plants by both susceptible and Cry3Bb1 and Cry34Ab1/Cry35Ab1-resistant WCR.

View Article and Find Full Text PDF

The Western corn rootworm (WCR) Diabrotica virgifera virgifera LeConte is one of the most economically important insect pests in North America. Since 2003, transgenic maize expressing WCR-active proteins from Bacillus thuringiensis (Bt) have been widely adopted as the main approach to controlling WCR in the U.S.

View Article and Find Full Text PDF