Publications by authors named "Hibar D"

Article Synopsis
  • Subcortical brain structures play a crucial role in various developmental and psychiatric disorders, and a study analyzed brain volumes in 74,898 individuals, identifying 254 genetic loci linked to these volumes, which accounted for up to 35% of variation.
  • The research included exploring gene expression in specific neural cell types, focusing on genes involved in intracellular signaling and processes related to brain aging.
  • The findings suggest that certain genetic variants not only influence brain volume but also have potential causal links to conditions like Parkinson’s disease and ADHD, highlighting the genetic basis for risks associated with neuropsychiatric disorders.
View Article and Find Full Text PDF
Article Synopsis
  • Subcortical brain structures play a crucial role in various disorders, and a study analyzed the genetic basis of brain volumes in nearly 75,000 individuals of European ancestry, revealing 254 loci linked to these volumes.
  • The research identified significant gene expression in neural cells, relating to brain aging and signaling, and found that polygenic scores could predict brain volumes across different ancestries.
  • The study highlights genetic connections between brain volumes and conditions like Parkinson's disease and ADHD, suggesting specific gene expression patterns could be involved in neuropsychiatric disorders.
View Article and Find Full Text PDF

The clinical profiles and outcomes of patients with neurotrophic tropomyosin receptor kinase fusion-positive (NTRK+) solid tumors receiving standard of care other than tropomyosin receptor kinase inhibitor (TRKi) targeted therapy have not been well documented. Here, we describe the clinical characteristics of patients with NTRK+ tumors treated in clinical practice using information from a United States electronic health record-derived clinicogenomic database. We also compared survival outcomes in NTRK+ patients and matched NTRK fusion-negative (NTRK-) patients and investigated the clinical prognostic value of NTRK fusions.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the causes of reduced cortical thickness in human epilepsies using brain imaging and gene expression data to understand underlying mechanisms.* -
  • Researchers found higher levels of activated microglia and endothelial cells in areas of reduced cortical thickness, both in imaging studies and post-mortem brain tissue from epilepsy patients.* -
  • Targeted depletion of activated microglia in a mouse model prevented cortical thinning and neuronal loss, suggesting microglia play a crucial role in these changes, potentially offering new approaches for epilepsy treatment beyond seizure control.*
View Article and Find Full Text PDF

Low-frequency 1q21.1 distal deletion and duplication copy number variant (CNV) carriers are predisposed to multiple neurodevelopmental disorders, including schizophrenia, autism and intellectual disability. Human carriers display a high prevalence of micro- and macrocephaly in deletion and duplication carriers, respectively.

View Article and Find Full Text PDF

The Enhancing NeuroImaging Genetics through Meta-Analysis copy number variant (ENIGMA-CNV) and 22q11.2 Deletion Syndrome Working Groups (22q-ENIGMA WGs) were created to gain insight into the involvement of genetic factors in human brain development and related cognitive, psychiatric and behavioral manifestations. To that end, the ENIGMA-CNV WG has collated CNV and magnetic resonance imaging (MRI) data from ~49,000 individuals across 38 global research sites, yielding one of the largest studies to date on the effects of CNVs on brain structures in the general population.

View Article and Find Full Text PDF

Delineating the association of age and cortical thickness in healthy individuals is critical given the association of cortical thickness with cognition and behavior. Previous research has shown that robust estimates of the association between age and brain morphometry require large-scale studies. In response, we used cross-sectional data from 17,075 individuals aged 3-90 years from the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to infer age-related changes in cortical thickness.

View Article and Find Full Text PDF

Age has a major effect on brain volume. However, the normative studies available are constrained by small sample sizes, restricted age coverage and significant methodological variability. These limitations introduce inconsistencies and may obscure or distort the lifespan trajectories of brain morphometry.

View Article and Find Full Text PDF

Here we review the motivation for creating the enhancing neuroimaging genetics through meta-analysis (ENIGMA) Consortium and the genetic analyses undertaken by the consortium so far. We discuss the methodological challenges, findings, and future directions of the genetics working group. A major goal of the working group is tackling the reproducibility crisis affecting "candidate gene" and genome-wide association analyses in neuroimaging.

View Article and Find Full Text PDF

Structural brain changes along the lineage leading to modern Homo sapiens contributed to our distinctive cognitive and social abilities. However, the evolutionarily relevant molecular variants impacting key aspects of neuroanatomy are largely unknown. Here, we integrate evolutionary annotations of the genome at diverse timescales with common variant associations from large-scale neuroimaging genetic screens.

View Article and Find Full Text PDF

The development and progression of solid tumors such as colorectal cancer (CRC) are known to be affected by the immune system and cell types such as T cells, natural killer (NK) cells, and natural killer T (NKT) cells are emerging as interesting targets for immunotherapy and clinical biomarker research. In addition, CD3 and CD8 T cell distribution in tumors has shown positive prognostic value in stage I-III CRC. Recent developments in digital computational pathology support not only classical cell density based tumor characterization, but also a more comprehensive analysis of the spatial cell organization in the tumor immune microenvironment (TiME).

View Article and Find Full Text PDF
Article Synopsis
  • Cortical characteristics like thickness, surface area, and volume change with age, cognitive function, and various neurological and psychiatric disorders.
  • A study of 22,824 individuals from multiple cohorts evaluated genetic factors influencing these brain measures, identifying 160 significant genetic associations linked to specific biological pathways.
  • Findings suggest a genetic connection between cortical traits and factors related to physical development, brain health, and mental illnesses, providing valuable insights for future research on brain changes with aging.
View Article and Find Full Text PDF
Article Synopsis
  • - Large-scale neuroimaging studies show differences in cortical thickness in various psychiatric disorders, but the biological reasons for these differences are not fully understood.
  • - The study aimed to identify neurobiological correlates of cortical thickness variations between affected individuals and controls across six disorders: ADHD, ASD, BD, MDD, OCD, and schizophrenia.
  • - Using data from 145 cohorts and advanced imaging techniques, the analysis revealed distinct patterns of cortical thickness associated with specific gene expressions in disorders, involving a total of over 28,000 participants.
View Article and Find Full Text PDF

MRI-derived brain measures offer a link between genes, the environment and behavior and have been widely studied in bipolar disorder (BD). However, many neuroimaging studies of BD have been underpowered, leading to varied results and uncertainty regarding effects. The Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Bipolar Disorder Working Group was formed in 2012 to empower discoveries, generate consensus findings and inform future hypothesis-driven studies of BD.

View Article and Find Full Text PDF

Background: At ketamine and esketamine doses at which antidepressant doses are achieved, these agents are relatively selective, noncompetitive, N-methyl-D-aspartate receptor antagonists. However, at substantially higher doses, ketamine has shown mu-opioid receptor (MOR-gene symbol: OPRM1) agonist effects. Preliminary clinical studies showed conflicting results on whether naltrexone, a MOR antagonist, blocks the antidepressant action of ketamine.

View Article and Find Full Text PDF

This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of "big data" (i.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied the brain's outer layer, called the cerebral cortex, to learn how genes can affect its structure.
  • They looked at brain scans from over 51,000 people and found 199 important genetic markers that relate to how the cortex is shaped.
  • The study showed that these genetic markers are linked to different brain functions and conditions like thinking skills, sleep problems, and ADHD.
View Article and Find Full Text PDF

Brain structural covariance networks reflect covariation in morphology of different brain areas and are thought to reflect common trajectories in brain development and maturation. Large-scale investigation of structural covariance networks in obsessive-compulsive disorder (OCD) may provide clues to the pathophysiology of this neurodevelopmental disorder. Using T1-weighted MRI scans acquired from 1616 individuals with OCD and 1463 healthy controls across 37 datasets participating in the ENIGMA-OCD Working Group, we calculated intra-individual brain structural covariance networks (using the bilaterally-averaged values of 33 cortical surface areas, 33 cortical thickness values, and six subcortical volumes), in which edge weights were proportional to the similarity between two brain morphological features in terms of deviation from healthy controls (i.

View Article and Find Full Text PDF

Importance: Recurrent microdeletions and duplications in the genomic region 15q11.2 between breakpoints 1 (BP1) and 2 (BP2) are associated with neurodevelopmental disorders. These structural variants are present in 0.

View Article and Find Full Text PDF
Article Synopsis
  • Subcortical brain structures play key roles in motion, emotions, learning, and consciousness, and their volumes are influenced by genetic variations.
  • A study analyzed nearly 40,000 individuals, discovering that variations in the volumes of key brain regions are heritable and identified 48 genetic loci linked to these volumes, with 40 being previously unknown.
  • The identified genes are connected to various biological processes, suggesting they could be crucial for understanding brain development, neurological disorders, and possible drug targets.
View Article and Find Full Text PDF

Adult neurogenesis occurs in the dentate gyrus of the hippocampus during adulthood and contributes to sustaining the hippocampal formation. To investigate whether neurogenesis-related pathways are associated with hippocampal volume, we performed gene-set enrichment analysis using summary statistics from a large-scale genome-wide association study (N = 13,163) of hippocampal volume from the Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Consortium and two year hippocampal volume changes from baseline in cognitively normal individuals from Alzheimer's Disease Neuroimaging Initiative Cohort (ADNI). Gene-set enrichment analysis of hippocampal volume identified 44 significantly enriched biological pathways (FDR corrected p-value < 0.

View Article and Find Full Text PDF

Brain lobar volumes are heritable but genetic studies are limited. We performed genome-wide association studies of frontal, occipital, parietal and temporal lobe volumes in 16,016 individuals, and replicated our findings in 8,789 individuals. We identified six genetic loci associated with specific lobar volumes independent of intracranial volume.

View Article and Find Full Text PDF

Genome-wide association studies (GWAS) link full genome data to a handful of traits. However, in neuroimaging studies, there is an almost unlimited number of traits that can be extracted for full image-wide big data analyses. Large populations are needed to achieve the necessary power to detect statistically significant effects, emphasizing the need to pool data across multiple studies.

View Article and Find Full Text PDF

Background: Childhood maltreatment (CM) plays an important role in the development of major depressive disorder (MDD). The aim of this study was to examine whether CM severity and type are associated with MDD-related brain alterations, and how they interact with sex and age.

Methods: Within the ENIGMA-MDD network, severity and subtypes of CM using the Childhood Trauma Questionnaire were assessed and structural magnetic resonance imaging data from patients with MDD and healthy controls were analyzed in a mega-analysis comprising a total of 3872 participants aged between 13 and 89 years.

View Article and Find Full Text PDF

There have been considerable recent advances in understanding the genetic architecture of Tourette syndrome (TS) as well as its underlying neurocircuitry. However, the mechanisms by which genetic variation that increases risk for TS-and its main symptom dimensions-influence relevant brain regions are poorly understood. Here we undertook a genome-wide investigation of the overlap between TS genetic risk and genetic influences on the volume of specific subcortical brain structures that have been implicated in TS.

View Article and Find Full Text PDF