Glutamate abnormalities in the medial prefrontal cortex (mPFC) are associated with cognitive deficits. We previously showed that homozygous deletion of CNS glutamate dehydrogenase 1 (Glud1), a metabolic enzyme critical for glutamate metabolism, leads to schizophrenia-like behavioral abnormalities and increased mPFC glutamate; mice heterozygous for CNS Glud1 deletion (C-Glud1 mice) showed no cognitive or molecular abnormalities. Here, we examined the protracted behavioral and molecular effects of mild injection stress on C-Glud1 mice.
View Article and Find Full Text PDFStress during development affects maternal behavior and offspring phenotypes. Stress in adolescence is particularly consequential on brain development and maturation, and is implicated in several psychiatric disorders. We previously showed that pre-reproductive stress (PRS) in female adolescent rats affects behavior and corticotropin releasing hormone receptor 1 (CRHR1) expression in first- (F1) and second- (F2) generation offspring.
View Article and Find Full Text PDFEarly life stress (ELS) increases predisposition to depression. We compared the effects of treatment with the fatty acid amide hydrolase (FAAH) inhibitor URB597, and the selective serotonin reuptake inhibitor paroxetine, on ELS-induced depressive-like behavior and the expression of microRNAs (miRs) associated with depression in the medial prefrontal cortex (mPFC), hippocampal CA1 area, lateral habenula and dorsal raphe in rats. We also examined the mRNA expression of serotonergic ( and ) and endocannabinoid (, and ) targets in the mPFC following ELS and pharmacological treatment.
View Article and Find Full Text PDFNMDA receptor blockade in rodents is commonly used to induce schizophrenia-like behavioral abnormalities, including cognitive deficits and social dysfunction. Aberrant glutamate and GABA transmission, particularly in adolescence, is implicated in these behavioral abnormalities. The endocannabinoid system modulates glutamate and GABA transmission, but the impact of endocannabinoid modulation on cognitive and social dysfunction is unclear.
View Article and Find Full Text PDFPre-reproductive stress (PRS) to adolescent female rats alters anxiogenic behavior in first (F1)- and second-generation (F2) offspring and increases mRNA expression of corticotropin-releasing factor receptor type 1 (Crhr1) in oocytes and in neonate offspring brain. Here, we ask whether the expression of Crhr1 and Crhr1-targeting microRNA is altered in brain, blood, and oocytes of exposed females and in the brain of their neonate and adult F1 and F2 offspring. In addition, we inquire whether maternal post-stress drug treatment reverses PRS-induced abnormalities in offspring.
View Article and Find Full Text PDFAdenosine to inosine RNA editing is an epigenetic process that entails site-specific modifications in double-stranded RNA molecules, catalyzed by adenosine deaminases acting on RNA (ADARs). Using the multiplex microfluidic PCR and deep sequencing technique, we recently showed that exposing adolescent female rats to chronic unpredictable stress before reproduction affects editing in the prefrontal cortex and amygdala of their newborn offspring, particularly at the serotonin receptor 5-HT2c (encoded by . Here, we used the same technique to determine whether post-stress, pre-reproductive maternal treatment with fluoxetine (5 mg/kg, 7 days) reverses the effects of stress on editing.
View Article and Find Full Text PDFBackground: Adenosine-to-inosine (A-to-I) RNA editing is an epigenetic modification catalyzed by adenosine deaminases acting on RNA (ADARs), and is especially prevalent in the brain. We used the highly accurate microfluidics-based multiplex PCR sequencing (mmPCR-seq) technique to assess the effects of development and environmental stress on A-to-I editing at 146 pre-selected, conserved sites in the rat prefrontal cortex and amygdala. Furthermore, we asked whether changes in editing can be observed in offspring of stress-exposed rats.
View Article and Find Full Text PDFAdenosine (A) to inosine (I) RNA editing is a post-transcriptional modification process that can affect synaptic function. Transcripts encoding the kainate GRIK1 and AMPA GluA2 glutamate receptor subunits undergo editing that leads to a glycine/arginine (Q/R) exchange and reduced Ca(2+) permeability. We hypothesized that editing at these sites could be experience-dependent, temporally dynamic and region-specific.
View Article and Find Full Text PDFHuman and animal studies indicate that vulnerability to stress may be heritable. We have previously shown that chronic, mild prereproductive stress (PRS) in adolescent female rats affects behavior and corticotropin releasing factor 1 (CRF1) expression in the brain of first-generation (F1) offspring. Here, we investigated the effects of PRS on anxiogenic behavior and CRF1 expression in male and female second-generation (F2) offspring.
View Article and Find Full Text PDFBackground: Human and animal studies indicate that vulnerability to stress may be heritable and that changes in germline may mediate some transgenerational effects. Corticotropin releasing factor type 1 (CRF1) is a key component in the stress response. We investigated changes in CRF1 expression in brain and ova of stressed female rats and in the brain of their neonate and adult offspring.
View Article and Find Full Text PDF