An essential step in muscle fiber maturation is the assembly of highly ordered myofibrils that are required for contraction. Much remains unknown about the molecular mechanisms governing the formation of the contractile apparatus. We identified an early embryonic motility mutant in zebrafish caused by integration of a transgene into the pseudophosphatase dual specificity phosphatase 27 (dusp27) gene.
View Article and Find Full Text PDFFront Neural Circuits
January 2013
Transgenic technologies enable the manipulation and observation of circuits controlling behavior by permitting expression of genetically encoded reporter genes in neurons. Frequently though, neuronal expression is accompanied by transgene expression in non-neuronal tissues, which may preclude key experimental manipulations, including assessment of the contribution of neurons to behavior by ablation. To better restrict transgene expression to the nervous system in zebrafish larvae, we have used DNA sequences derived from the neuron-restrictive silencing element (NRSE).
View Article and Find Full Text PDFWe demonstrate the application of image-based high-content screening (HCS) methodology to identify small molecules that can modulate the FGF/RAS/MAPK pathway in zebrafish embryos. The zebrafish embryo is an ideal system for in vivo high-content chemical screens. The 1-day old embryo is approximately 1mm in diameter and can be easily arrayed into 96-well plates, a standard format for high throughput screening.
View Article and Find Full Text PDF