Unstructured data in Electronic Health Records (EHRs) often contains critical information-complementary to imaging-that could inform radiologists' diagnoses. But the large volume of notes often associated with patients together with time constraints renders manually identifying relevant evidence practically infeasible. In this work we propose and evaluate a zero-shot strategy for using LLMs as a mechanism to efficiently retrieve and summarize unstructured evidence in patient EHR relevant to a given query.
View Article and Find Full Text PDFProc Mach Learn Res
August 2021
Social and Behavioral Determinants of Health (SBDHs) are environmental and behavioral factors that have a profound impact on health and related outcomes. Given their importance, physicians document SBDHs of their patients in Electronic Health Records (EHRs). However, SBDHs are mostly documented in unstructured EHR notes.
View Article and Find Full Text PDFBackground: Opioid overdose (OD) and related deaths have significantly increased in the United States over the last 2 decades. Existing studies have mostly focused on demographic and clinical risk factors in noncritical care settings. Social and behavioral determinants of health (SBDH) are infrequently coded in the electronic health record (EHR) and usually buried in unstructured EHR notes, reflecting possible gaps in clinical care and observational research.
View Article and Find Full Text PDF