Fluoroquinolones are a class of antibacterial agents used clinically to treat a wide array of bacterial infections and target bacterial type-II topoisomerases (DNA gyrase and topoisomerase IV). Fluoroquinolones, however potent, are susceptible to bacterial resistance with prolonged use, which limits their use in the clinic. Quinazoline-2,4-diones also target bacterial type-II topoisomerases and are not susceptible to bacterial resistance similar to fluoroquinolones, however, their potency pales in comparison to fluoroquinolones.
View Article and Find Full Text PDFIn the search for novel hybrid molecules by fusing two biologically active scaffolds into one heteromeric chemotype, we found that hybrids of azithromycin and ciprofloxacin/gatifloxacin 26j and 26l can inhibit the supercoiling activity of E. coli gyrase by poisoning it in a way similar to fluoroquinolones. This may modestly contribute to their potencies, which are equal to ciprofloxacin against constitutively resistant Staphylococcus aureus, whose growth is not inhibited by the presence of macrolides.
View Article and Find Full Text PDFFluoroquinolones substituted with N-1 biphenyl and napthyl groups were discovered to act as catalytically inhibitors of human topoisomerases I and II, and to possess anti-proliferative activity in vivo. Structural requirements for these novel quinolones to inhibit catalytic activity of human topoisomerase I have not been explored. In this work novel derivatives of the N-1 biphenyl fluoroquinolone were designed, synthesized and evaluated to understand structural requirements of the C-3 carboxylic acid, C-6 fluorine, C-7 aminomethylpyrrolidine, C-8 methoxy, and the N-1 biphenyl functional groups for hTopoI inhibition.
View Article and Find Full Text PDFA Mg-water bridge between the C-3, C-4 diketo moiety of fluoroquinolones and the conserved amino acid residues in the GyrA/ParC subunit is critical for the binding of a fluoroquinolone to a topoisomerase-DNA covalent complex. The fluoroquinolone UING-5-249 (249) can bind to the GyrB subunit through its C7-aminomethylpyrrolidine group. This interaction is responsible for enhanced activities of 249 against the wild type and quinolone-resistant mutant topoisomerases.
View Article and Find Full Text PDFFluoroquinolone (FQ)-resistant bacteria pose a major global health threat. Unanalysed genomic data from thousands of sequenced microbes likely contain important hints regarding the evolution of FQ resistance, yet this information lies fallow. Here we analysed the co-occurrence patterns of quinolone resistance mutations in genes encoding the FQ drug targets DNA gyrase (gyrase) and topoisomerase IV (topo-IV) from 36,402 bacterial genomes, representing 10 Gram-positive and 10 Gram-negative species.
View Article and Find Full Text PDFFluoroquinolone-class agents selectively target the bacterial type IIA topoisomerases DNA gyrase and topoisomerase IV, with a few exceptions that target eukaryotic type IIA topoisomerases. Fluoroquinolones bind and stabilize type IIA topoisomerase-DNA covalent complexes that contain a double-strand break. This unique mode of action is referred to as 'topoisomerase poisoning'.
View Article and Find Full Text PDFStructural studies of topoisomerase-fluoroquinolone-DNA ternary complexes revealed a cavity between the quinolone N-1 position and the active site tyrosine. Fluoroquinolone derivatives having positively charged or aromatic moieties extended from the N-1 position were designed to probe for binding contacts with the phosphotyrosine residue in ternary complex. While alkylamine, alkylphthalimide, and alkylphenyl groups introduced at the N-1 position afforded derivatives that maintained modest inhibition of the supercoiling activity of DNA gyrase, none retained ability to poison DNA gyrase.
View Article and Find Full Text PDFMany cancer type-specific anticancer agents have been developed and significant advances have been made toward precision medicine in cancer treatment. However, traditional or nonspecific anticancer drugs are still important for the treatment of many cancer patients whose cancers either do not respond to or have developed resistance to cancer-specific anticancer agents. DNA topoisomerases, especially type IIA topoisomerases, are proved therapeutic targets of anticancer and antibacterial drugs.
View Article and Find Full Text PDFDNA topoisomerases are proven therapeutic targets of antibacterial agents. Quinolones, especially fluoroquinolones, are the most successful topoisomerase-targeting antibacterial drugs. These drugs target type IIA topoisomerases in bacteria.
View Article and Find Full Text PDFFluoroquinolones form drug-topoisomerase-DNA complexes that rapidly block transcription and replication. Crystallographic and biochemical studies show that quinolone binding involves a water/metal-ion bridge between the quinolone C3-C4 keto-acid and amino acids in helix-4 of the target proteins, GyrA (gyrase) and ParC (topoisomerase IV). A recent cross-linking study revealed a second drug-binding mode in which the other end of the quinolone, the C7 ring system, interacts with GyrA.
View Article and Find Full Text PDFBackground: Fluoroquinolones target bacterial type IIA topoisomerases, DNA gyrase and topoisomerase IV (Topo IV). Fluoroquinolones trap a topoisomerase-DNA covalent complex as a topoisomerase-fluoroquinolone-DNA ternary complex and ternary complex formation is critical for their cytotoxicity. A divalent metal ion is required for type IIA topoisomerase-catalyzed strand breakage and religation reactions.
View Article and Find Full Text PDFA series of 9-alkylaminoacridines were synthesized and evaluated for activity against two strains of methicillin-resistant and one strain of methicillin-sensitive Staphylococcus aureus. Results are presented that show a clear structure activity relationship between the N-alkyl chain length and antibacterial activity with peak MIC99 values of 2-3 μM for alkyl chains ranging from 10 to 14 carbons in length. Although prior work has linked the function of acridine-based compounds to intercalation and topoisomerase inhibition, the present results show that 9-alkylaminoacridines likely function as amphiphilic membrane-active disruptors potentially in a similar manner as quaternary ammonium antimicrobials.
View Article and Find Full Text PDFDNA gyrase and topoisomerase IV control bacterial DNA topology by breaking DNA, passing duplex DNA through the break, and then resealing the break. This process is subject to reversible corruption by fluoroquinolones, antibacterials that form drug-enzyme-DNA complexes in which the DNA is broken. The complexes, called cleaved complexes because of the presence of DNA breaks, have been crystallized and found to have the fluoroquinolone C-7 ring system facing the GyrB/ParE subunits.
View Article and Find Full Text PDFThe increasing occurrence of drug-resistant bacterial infections in the clinic has created a need for new antibacterial agents. Natural products have historically been a rich source of both antibiotics and lead compounds for new antibacterial agents. The natural product simocyclinone D8 (SD8) has been reported to inhibit DNA gyrase, a validated antibacterial drug target, by a unique catalytic inhibition mechanism of action.
View Article and Find Full Text PDFBackground: The increase in antibiotic resistant bacteria has led to renewed interest in development of alternative antimicrobial compounds such as antimicrobial peptides (AMPs), either naturally-occurring or synthetically-derived. Knowledge of the mode of action (MOA) of synthetic compounds mimicking the function of AMPs is highly valuable both when developing new types of antimicrobials and when predicting resistance development. Despite many functional studies of AMPs, only a few of the synthetic peptides have been studied in detail.
View Article and Find Full Text PDFNumerous therapeutic applications have been proposed for molecules that bind heparin-binding proteins. Development of such compounds has primarily focused on optimizing the degree and orientation of anionic groups on a scaffold, but utility of these polyanions has been diminished by their typically large size and non-specific interactions with many proteins. In this study -arylacyl sulfonated aminoglycosides were synthesized and evaluated for their ability to selectively inhibit structurally similar bacterial and human topoisomerases.
View Article and Find Full Text PDFDuring a survey of actinobacteria known to suppress the growth of Streptomyces scabies (the causative agent of potato scab disease) in vivo, six new rhamnosylated alkaloids, the solphenazines A-F (1-6), were isolated from a biological control strain of Streptomyces (DL-93). The known rhamnosyl analogue of paraben (9) was also isolated along with a new rhamnosylated derivative of N-methyl-p-aminobenzoic acid (10). None of the compounds exhibited any antibacterial or antifungal activity against a standard panel of microorganisms, but compounds 1, 2, and 6 displayed some cytotoxicity against HCT-116 cancer cells.
View Article and Find Full Text PDFSimocyclinone D8 is an antibiotic isolated from Streptomyces antibioticus Tü 6040 that inhibits the supercoiling activity of DNA gyrase. It also exhibits an inhibitory effect on human topoisomerase II and an antiproliferative activity against some cancer cell lines. Our biochemical studies have revealed that simocyclinone D8 can inhibit the catalytic activity of human topoisomerase I.
View Article and Find Full Text PDFHuman topoisomerase II (hTopoII) inhibitors are important chemotherapeutic agents in many different settings including treatment of malignant mesothelioma. Topoisomerase poisons, such as etoposide and doxorubicin, function by trapping the DNA-enzyme covalent complex producing DNA strand breaks which can ultimately lead to cancer cell death, as well as development of secondary malignancies. While these compounds have been used successfully in treating a wide variety of cancers, their use against mesothelioma has been limited.
View Article and Find Full Text PDFBioorg Med Chem Lett
August 2011
Novel fluoroquinolone derivatives substituted with a 2-thioalkyl moiety, with and without a concomitant 3-carboxylate group, were synthesized to evaluate the effect of C-2 thioalkyl substituents on gyrase binding and inhibition. The presence of a 2-thioalkyl group universally decreased activity as compared to parent fluoroquinolones. However, with derivatives of moxifloxacin the presence of either a 2-thioalkyl group or a 3-carboxylate moiety increased activity over the 2,3-unsubstituted derivative.
View Article and Find Full Text PDFAntimicrob Agents Chemother
July 2010
Bacterial resistance presents a difficult issue for fluoroquinolone treatment of bacterial infections. In previous work, we reported that 8-methoxy-quinazoline-2,4-diones are active against quinolone-resistant mutants of Escherichia coli. Here, we demonstrate the activity of a representative 8-methoxy-quinazoline-2,4-dione against quinolone-resistant gyrases.
View Article and Find Full Text PDFA series of substituted xanthenes was synthesized and screened for activity using DU-145, MCF-7, and HeLa cancer cell growth inhibition assays. The most potent compound, 9 g ([N,N-diethyl]-9-hydroxy-9-(3-methoxyphenyl)-9H-xanthene-3-carboxamide), was found to inhibit cancer cell growth with IC(50) values ranging from 36 to 50 microM across all three cancer cell lines. Structure-activity relationship (SAR) data is presented that indicates additional gains in potency may be realized through further derivatization of the compounds (e.
View Article and Find Full Text PDFThe quinolones trap DNA gyrase and DNA topoisomerase IV on DNA as complexes in which the DNA is broken but constrained by protein. Early studies suggested that drug binding occurs largely along helix-4 of the GyrA (gyrase) and ParC (topoisomerase IV) proteins. However, recent X-ray crystallography shows drug intercalating between the -1 and +1 nucleotides of cut DNA, with only one end of the drug extending to helix-4.
View Article and Find Full Text PDFThe cytotoxicity and mechanism of action of a series of substituted 9-aminoacridines is evaluated using topoisomerase I and cancer cell growth inhibition assays. In previous work, compounds of this type were shown to catalytically inhibit topoisomerase II, leading to a G1-S phase arrest of the cell cycle and apoptosis in pancreatic cancer cells in vitro and in vivo. The present study expands the potential utility of these compounds in the development of cancer therapeutics by showing that these compounds inhibit proliferation of cell lines derived from the nine most common human cancers.
View Article and Find Full Text PDFSimocyclinone D8 (SD8) exhibits antibiotic activity against gram-positive bacteria but not against gram-negative bacteria. The molecular basis of the cytotoxicity of SD8 is not fully understood, although SD8 has been shown to inhibit the supercoiling activity of Escherichia coli gyrase. To understand the mechanism of SD8, we have employed biochemical assays to directly measure the sensitivities of E.
View Article and Find Full Text PDF