Publications by authors named "Hezuo Lu"

Ependymal cells (EpCs), as a potential stem cell niche, have gained interest for their potential in vivo stem cell therapy for spinal cord injury (SCI). Heterogeneity of spinal EpCs may contribute to differences in the ability of spinal EpCs to proliferate, differentiate and transition after injury, while there is limited understanding of the regulation of these events. Our research found that ezrin (Ezr) was expressed highly in EpCs of the spinal cord, and its upregulation rapidly occurred after injury (6 h).

View Article and Find Full Text PDF
Article Synopsis
  • The study examines the role of ASC, a protein important for inflammasome activation, in neuroinflammation due to spinal cord injury (SCI), emphasizing the need to understand its function in specific cell types, particularly macrophages.
  • Researchers used a mouse model with macrophage-specific knockout of ASC and found reduced macrophage infiltration and altered immune responses that favor healing during SCI recovery.
  • The findings suggest that targeting ASC in peripheral macrophages might improve nerve function recovery after SCI, presenting a potential new avenue for treatment strategies.
View Article and Find Full Text PDF

Background: Oxidative stress is a crucial factor contributing to the occurrence and development of secondary damage in spinal cord injuries (SCI), ultimately impacting the recovery process. α-lipoic acid (ALA) exhibits potent antioxidant properties, effectively reducing secondary damage and providing neuroprotective benefits. However, the precise mechanism by which ALA plays its antioxidant role remains unknown.

View Article and Find Full Text PDF

Inflammation is one of the key injury factors for spinal cord injury (SCI). Exosomes (Exos) derived from M2 macrophages have been shown to inhibit inflammation and be beneficial in SCI animal models. However, lacking targetability restricts their application prospects.

View Article and Find Full Text PDF

Aims: Carbapenem-resistant Klebsiella pneumoniae (CRKP) infections poses a significant threat to human health, necessitating urgent development of new antimicrobial agents. Silver nanoparticles (AgNPs), which are among the most widely used engineered nanomaterials, have been extensively studied. However, the impact of AgNPs on CRKP and the potential for drug resistance development remain inadequately explored.

View Article and Find Full Text PDF

Silver nanoparticles (AgNPs) have wide clinical applications because of their excellent antibacterial properties; however, they can cause liver inflammation in animals. Macrophages are among the main cells mediating inflammation and are also responsible for the phagocytosis of nanomaterials. The NLRP3 inflammasome is a major mechanism of inflammation, and its activation both induces cytokine release and triggers inflammatory cell death (i.

View Article and Find Full Text PDF

Immune regulation therapies are considered promising for treating classically activated macrophage (M1)-driven viral myocarditis (VM). Alternatively, activated macrophage (M2)-derived extracellular vesicles (M2 EVs) have great immunomodulatory potential owing to their ability to reprogram macrophages, but their therapeutic efficacy is hampered by insufficient targeting capacity in vivo. Therefore, we developed cardiac-targeting peptide (CTP) and platelet membrane (PM)-engineered M2 EVs enriched with viral macrophage inflammatory protein-II (vMIP-II), termed CTP/PM-M2 EVs, to improve the delivery of EVs "cargo" to the heart tissues.

View Article and Find Full Text PDF

Objective: Excess reactive oxygen species (ROS) generated by oxidative stress is a crucial factor affecting neuronal dysfunction after spinal cord injury (SCI). IL-11 has been reported to have antioxidative stress capacity. In the present study, we investigated the protective effect and mechanism of IL-11 against neuronal cell damage caused by oxidative imbalance.

View Article and Find Full Text PDF

Background: Following spinal cord injury (SCI), a large number of peripheral monocytes infiltrate into the lesion area and differentiate into macrophages (Mø). These monocyte-derived Mø are very difficult to distinguish from the local activated microglia (MG). Therefore, the term Mø/MG are often used to define the infiltrated Mø and/or activated MG.

View Article and Find Full Text PDF

Proinflammatory immune cell subsets constitute the majority in the local microenvironment after spinal cord injury (SCI), leading to secondary pathological injury. Previous studies have demonstrated that inflammasomes act as an important part of the inflammatory process after SCI. Probenecid, an inhibitor of the Pannexin-1 channel, can inhibit the activation of inflammasomes.

View Article and Find Full Text PDF

Background: Inflammatory reactions induced by spinal cord injury (SCI) are essential for recovery after SCI. Atractylenolide III (ATL-III) is a natural monomeric herbal bioactive compound that is mainly derived in Atractylodes macrocephala Koidz and has anti-inflammatory and neuroprotective effects.

Objective: Here, we speculated that ATL-III may ameliorate SCI by modulating microglial/macrophage polarization.

View Article and Find Full Text PDF

We have previously reported that morroniside promoted motor activity after spinal cord injury (SCI) in rats. However, the mechanism by which morroniside induces recovery of injured spinal cord (SC) remains unknown. In the current study, RNA sequencing (RNA-seq) was employed to evaluate changes of gene expressions at the transcriptional level of the injured spinal cords in morroniside-administrated rats.

View Article and Find Full Text PDF

Spinal cord injury (SCI) is a disabling condition that often leads to permanent neurological deficits without an effective treatment. Reactive oxygen species (ROS) produced during oxidative stress play a vital role in the pathogenesis following SCI. The antioxidant morroniside is the main active component of the Chinese medicine Cornus officinalis.

View Article and Find Full Text PDF

Neurodegenerative disorders, including spinal cord injury (SCI), result in oxidative stress-induced cell damage. Morroniside (MR), a major active ingredient of the Chinese herb Shan Zhu Yu, has been shown to ameliorate oxidative stress and inflammatory response. Our previous study also confirmed that morroniside protects SK-N-SH cell line (human neuroblastoma cells) against oxidative impairment.

View Article and Find Full Text PDF

Inflammation is a major cause of neuronal injury after spinal cord injury. We hypothesized that inhibiting caspase-1 activation may reduce neuroinflammation after spinal cord injury, thus producing a protective effect in the injured spinal cord. A mouse model of T9 contusive spinal cord injury was established using an Infinite Horizon Impactor, and VX-765, a selective inhibitor of caspase-1, was administered for 7 successive days after spinal cord injury.

View Article and Find Full Text PDF
Article Synopsis
  • * Exosomal miRNAs, which are found in body fluids, have advantages over free miRNAs and may be transported from the central nervous system after injury.
  • * A study using next-generation sequencing identified changes in serum exosomal miRNAs in SCI rats, suggesting these changes could explain SCI pathology and offer valuable biomarkers for diagnosis and prognosis.
View Article and Find Full Text PDF

Background: After spinal cord injury (SCI), destructive immune cell subsets are dominant in the local microenvironment, which are the important mechanism of injury. Studies have shown that inflammasomes play an important role in the inflammation following SCI, and apoptosis-associated speck-like protein containing a card (ASC) is the adaptor protein shared by inflammasomes. Therefore, we speculated that inhibiting ASC may improve the local microenvironment of injured spinal cord.

View Article and Find Full Text PDF

Previous studies have shown that caspase-1 plays an important role in the acute inflammatory response of spinal cord injury (SCI). VX‑765, a novel and irreversible caspase‑1 inhibitor, has been reported to effectively intervene in inflammation. However, the effect of VX‑765 on genome‑wide transcription in acutely injured spinal cords remains unknown.

View Article and Find Full Text PDF

Background: Recent studies have found that probenecid has neuroprotective and reparative effects on central nervous system injuries. However, its effect on genome-wide transcription in acute spinal cord injury (SCI) remains unknown. In the present study, RNA sequencing (RNA-Seq) is used to analyze the effect of probenecid on the local expression of gene transcription 8 h after spinal injury.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are involved in a series of pathology of spinal cord injury (SCI). Although, locally expressed miRNAs have advantages in studying the pathological mechanism, they cannot be used as biomarkers. The "free circulation" miRNAs can be used as biomarkers, but they have low concentration and poor stability in body fluids.

View Article and Find Full Text PDF

Unlabelled: Spinal cord injury (SCI), a serious neurological disease, has few therapeutic interventions. A small molecule, P7C3, has been confirmed to play a role in neuroprotection of some neurological diseases. But the effect of P7C3 on acute SCI has not been investigated.

View Article and Find Full Text PDF

Unlabelled: It is important to find specific and easily detectable diagnostic markers in acute stage of spinal cord injury for guiding treatment and estimating prognosis. Although, microRNAs are attractive biomarkers, there is still no uniform standard for clinical evaluation of spinal cord injury based on “free circulation” miRNA spectrum. The reason may be that miRNA analysis from biological fluids is influenced by many pre-analysis variables.

View Article and Find Full Text PDF

The underlying mechanisms of macrophage polarization have been detected by genome-wide transcriptome analysis in a variety of mammals. However, the transcriptome profile of rat genes in bone marrow-derived macrophages (BMM) at different activation statuses has not been reported. Therefore, we performed RNA-Sequencing to identify gene expression signatures of rat BMM polarized in vitro with different stimuli.

View Article and Find Full Text PDF

Unlabelled: The previous studies showed that alternatively activated anti-inflammatory macrophage (M2) adoptive immunity can improve the proportion of local M2 cells and play the neuroprotective effect after spinal cord injury (SCI). Its molecular mechanism is not yet very clear. Therefore, this study aims to analyze the effect of the M2 adoptive transfer on the local expression of gene transcription.

View Article and Find Full Text PDF

MicroRNAs (miRNAs/miRs) are small, noncoding RNA molecules that are closely associated with the occurrence and development of tumors. miR-20b is overexpressed in hepatocellular carcinoma cell lines and tissues. However, it is not clear whether miR-20b can promote the proliferation of hepatocellular carcinoma cells.

View Article and Find Full Text PDF