Publications by authors named "Hezhou Liu"

Electronic skin (e-skin), a skin-like wearable electronic device, holds great promise in the fields of telemedicine and personalized healthcare because of its good flexibility, biocompatibility, skin conformability, and sensing performance. E-skin can monitor various health indicators of the human body in real time and over the long term, including physical indicators (exercise, respiration, blood pressure, etc.) and chemical indicators (saliva, sweat, urine, etc.

View Article and Find Full Text PDF

Presently, piezoelectric materials are gradually playing a significant role within composites to improve the damping and vibrational attenuation capacities of host composites. Previous studies paid attention to isolating the mechanical damping contribution and piezoelectric contribution of polymer-based piezoelectric composites (PPCs). However, reports detailing the piezoelectric damping of such materials have not paid sufficient attention to the technologies and methods to improve the piezoelectric damping of PPCs.

View Article and Find Full Text PDF

Reaction kinetics can be improved by the enhanced electrical contact between different components growing symbiotically. But so far, due to the necessity for material synthesis conditions match, the component structures of cooperative growth are similar, and the materials are of the same type. The collaborative growth of high-reaction kinetics composite homogeneous core-shell heterostructure between various materials is innovatively proposed with different structures in one step.

View Article and Find Full Text PDF

Solid-state lithium batteries hold great promise for next-generation energy storage systems. However, the formation of lithium filaments within the solid electrolyte remains a critical challenge. In this study, we investigate the crucial role of morphology in determining the resistance of garnet-type electrolytes to lithium filaments.

View Article and Find Full Text PDF

Current methods for making and disposing synthetic polymers have been widely pursued and are largely unsustainable. As a part of the solution, the reversible nature of dynamic covalent bonds emerges as an extraordinarily diverse and valuable feature in the development of exotic molecules and extended structures. With these bonds, it should be possible to construct recyclable and mechanically interlocked molecular structures using relatively simple precursors with preorganized geometries.

View Article and Find Full Text PDF

Hydrogels have gained impressive attention in biological medicine due to their excellent biosafety, softness, and varied functional components. However, conventional hydrogels have inherent defects, such as low tensile strength, weak water-locking, and poor anti-freezing. In tissue engineering, once the hydrogel loses water or freezes, it will harden the interaction interfaces and destroy the nascent granulation tissue.

View Article and Find Full Text PDF

Cobalt tetraoxide (CoO) is regarded as a promising anode material for Li-ion batteries owing to its high theoretical capacity (890 mAh g), simple preparation, and controllable morphology. Nanoengineering has been proven to be an effective method for producing high-performance electrode materials. However, systematic research on the influence of material dimensionality on battery performance is lacking.

View Article and Find Full Text PDF

Ionic conductive hydrogels used as flexible wearable sensor devices have attracted considerable attention because of their easy preparation, biocompatibility, and macro/micro mechanosensitive properties. However, developing an integrated conductive hydrogel that combines high mechanical stability, strong adhesion, and excellent mechanosensitive properties to meet practical requirements remains a great challenge owing to the incompatibility of properties. Herein, we prepare a multifunctional ionic conductive hydrogel by introducing high-modulus bacterial cellulose (BC) to form the skeleton of double networks, which exhibit great mechanical properties in both tensile (83.

View Article and Find Full Text PDF

As classic shape memory polymers featuring shape reconfiguration of temporary state, covalent adaptable networks containing reversible bonds can enable permanent-state reconfigurability through topological rearrangement via dynamic bond exchange. Yet, such an attractive dual shape programmability is limited by the actuation mode of direct heat transfer and poor mechanical properties, restricting its control precision and functionality. Herein, we presented a method to create nanocomposites with photomodulated dual shape programmability and remarkable mechanical properties leading the fields of covalent adaptable networks.

View Article and Find Full Text PDF

Dynamic full-thickness skin wound healing remains an intricate problem due to the humid environment and frequent exercise. Recently, multifunctional hydrogels have a great promise in wound repair. However, traditional hydrogels only keep the wound moist, protect the wound from bacterial infection, and cannot actively drive dynamic wound closure.

View Article and Find Full Text PDF

Acoustic absorption materials play an important role in eliminating the negative effects of noise. Herein, a polyvinyl alcohol (PVA)-assisted freeze-casting was developed for controllably fabricating reduced graphene oxide wrapped carbon nanofiber (RGO@CNF)/graphene oxide composite aerogel. During the freeze-casting, PVA was used as an icing inhibitor to control the size of ice crystals.

View Article and Find Full Text PDF

Nano-sized two-dimensional carbonaceous materials have been widely used as the matrix for alloying-type and conversion-type anode materials for Li-ion batteries (LIBs) to improve structural stability and rate performance. However, relevant synthesis usually requires rigorous conditions and chronic reaction processes. Herein, we have designed a simple solvothermal reaction and heat treatment to prepare a novel CoO/Co/C two-dimensional nanosheet (CoO/Co/C 2DNS) by adopting cellulose nanofibers (CNFs) as the precursor.

View Article and Find Full Text PDF

Programmable and reconfigurable artificial muscles are highly promising and desirable for applications in various fields, including soft robotics, flexible devices, and biomedical devices. However, the combination of considerable strain and high energy density remains a dilemma to overcome. As stimulus-responsive polymers, shape memory polymers (SMPs) with enhanced mechanical properties and programmability have the potential to solve this problem.

View Article and Find Full Text PDF

It remains urgent challenges to adopt suitable strategies to consume unwanted microwave pollution emitted by high-tech electronic devices satisfactorily. Confronted with narrow effective absorption bandwidth (EAB) and high filler loading bottlenecks of MXene-Based microwave absorber, herein, we employ Lewis molten salt etching approach to both exfoliate TiAlCN powders into TiCNCl suspension and intercalate ferromagnetic composition into interlamination simultaneously. By utilizing the crosslinking effect of dopamine, the TiCNCl are anchored on the surfaces of graphene oxide (GO) nanosheets, constructing interconnecting microstructure.

View Article and Find Full Text PDF

A method of forming an Mg/Al intermetallic compound coating enriched with MgAl and MgAl was developed by heat treatment of electrodeposition Al coatings on Mg alloy at 350 °C. The composition of the Mg/Al intermetallic compounds could be tuned by changing the thickness of the Zn immersion layer. The morphology and composition of the Mg/Al intermetallic compound coatings were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and electron backscattered diffraction (EBSD).

View Article and Find Full Text PDF

Confronted with microwave pollution issues, there is an urgent need for microwave absorption materials that possess optimal combinations of dielectric loss and magnetic loss properties. While a variety of studies focus on the components, the construction of nanostructure is rarely studied, which is of equivalent significance to microwave absorber design. In this work, Co-ZIF-67 was adopted as self-template to grow N-doped graphene/carbon nanotube interlinked conductive networks in-situ under a one-step carbonization process with tailored microwave absorption properties.

View Article and Find Full Text PDF

Recently, hydrogel-based conductive materials and their applications as smart wearable devices have been paid tremendous attention due to their high stretchability, flexibility, and excellent biocompatibility. Compared with single functional conductive hydrogels, multifunctional conductive hydrogels are more advantageous to match various demands for practical applications. This review focuses on multifunctional conductive hydrogels applied for smart wearable devices.

View Article and Find Full Text PDF

Stimulus-responsive hydrogels, such as conductive hydrogels and thermoresponsive hydrogels, have been explored extensively and are considered promising candidates for smart materials such as wearable devices and artificial muscles. However, most of the existing studies on stimulus-responsive hydrogels have mainly focused on their single stimulus-responsive property and have not explored multistimulus-responsive or multifunction properties. Although some works involved multifunctionality, the prepared hydrogels were incompatible.

View Article and Find Full Text PDF

The Al coatings achieved via electrodeposition on a Cu electrode from AlCl-NaCl-KCl (80-10-10 wt.%) molten salts electrolyte with Tetramethylammonium Chloride (TMACl) and Sodium Iodide (NaI) additives is reported. The effect of the two additives on electrodeposition were investigated by cyclic voltammetry (CV), chronopotentiometry (CP), scanning electron microscopy (SEM) and X-ray diffraction (XRD).

View Article and Find Full Text PDF

Solid-state lithium batteries can improve the safety and energy density of the present liquid-electrolyte-based lithium-ion batteries. To achieve this goal, both solid electrolyte and lithium anode technology are the keys. Lithium garnet is a promising electrolyte to enable the next generation solid-state lithium batteries due to its high ionic conductivity, good chemical, and electrochemical stability, and easiness to scale up.

View Article and Find Full Text PDF

Shape-memory materials are smart materials that can remember an original shape and return to their unique state from a deformed secondary shape in the presence of an appropriate stimulus. This property allows these materials to be used as shape-memory artificial muscles, which form a subclass of artificial muscles. The shape-memory artificial muscles are fabricated from shape-memory polymers (SMPs) by twist insertion, shape fixation via T or T, or by liquid crystal elastomers (LCEs).

View Article and Find Full Text PDF

Injectable hydrogels have attracted growing interests as promising biomaterials for clinical applications, due to their minimum invasive implanting approach and easy-handling performance. Nevertheless, natural biomaterials-based injectable hydrogels with desirable nontoxicity are suffering from limited functions, failing to fulfill the requirements of clinical biomaterials. The development of novel injectable biomaterials with a combination of biocompatibility and adequate functional properties is a growing urgency toward biomedical applications.

View Article and Find Full Text PDF

Noise pollution has been recognized as one of the leading environmental problems worldwide and has a negative impact on the physiological and psychological health of humans. Various porous polymeric materials have been found to be inefficient for sound absorption, especially in low-frequency interval; in addition, these materials have other disadvantages such as hygroscopicity and flammability. Herein, an efficient and economical semi-open cellular structure consisting of tiny self-assembled graphene oxide (GO) sheets interrupted by functionalized carbon nanotubes (CNT) was demonstrated as an acoustic composite foam.

View Article and Find Full Text PDF

A hydrogel for potential applications in wound dressing should possess several peculiar properties, such as efficient self-healing ability and mechanical toughness, so as to repair muscle and skin damage. Additionally, excellent cell affinity and tissue adhesiveness are also necessary for the hydrogel to integrate with the wound tissue in practical applications. Herein, an ultratough and self-healing hydrogel with superior cell affinity and tissue adhesiveness is prepared.

View Article and Find Full Text PDF

In this article, polyurethane (PU)/epoxy (EP) interpenetrating polymer networks (IPNs) filled graphene aerogel (PEGA) was facilely fabricated by a one-step vacuum-assisted filling process. Effects of PU content on damping performance, thermal stability and mechanical properties of the PEGA composites were studied systematically. Results reveal that addition of graphene aerogel improves damping properties of PU/EP IPNs and increases the thermal decomposition temperature.

View Article and Find Full Text PDF