Publications by authors named "Heywood M Petry"

Ventroposterior medialis parvocellularis (VPMP) nucleus of the primate thalamus receives direct input from the nucleus of the solitary tract, whereas the homologous thalamic structure in the rodent does not. To reveal whether the synaptic circuitries in these nuclei lend evidence for conservation of design principles in the taste thalamus across species or across sensory thalamus in general, we characterized the ultrastructural and molecular properties of the VPMP in a close relative of primates, the tree shrew (Tupaia belangeri), and compared these to known properties of the taste thalamus in rodent, and the visual thalamus in mammals. Electron microscopy analysis to categorize the synaptic inputs in the VPMP revealed that the largest-size terminals contained many vesicles and formed large synaptic zones with thick postsynaptic density on multiple, medium-caliber dendrite segments.

View Article and Find Full Text PDF

The hippocampal complex (HC) is central to long-term memory storage and retrieval as well as spatial navigation across many species. Notably, humans appear to have greatly enhanced and possibly unique HC-mediated capacities such as constructive episodic simulation. Key studies have shown that the human HC is disproportionately large amongst hominoids, but much remains unknown at the levels of substructural evolutionary reorganization and ecological selection.

View Article and Find Full Text PDF

This review provides a historical account of the discovery of secondary visual pathways (from retina to the superior colliculus to the dorsal thalamus and extrastriate cortex), and Vivien Casagrande's pioneering studies of this system using the tree shrew as a model. Subsequent studies of visual pathways in the tree shrew are also reviewed, beginning with a description of the organization and central projections of the tree shrew retina. The organization and connectivity of second visual system components that include the retino-recipient superior colliculus, tecto-recipient pulvinar nucleus and its projections, and the tecto-recipient dorsal lateral geniculate nucleus and its projections are detailed.

View Article and Find Full Text PDF

The tree shrew (Tupaia belangeri) striate cortex is reciprocally connected with the dorsal lateral geniculate nucleus (dLGN), the ventral pulvinar nucleus (Pv), and the claustrum. In the Pv or the dLGN, striate cortex projections are thought to either strongly "drive", or more subtly "modulate" activity patterns respectively. To provide clues to the function of the claustrum, we compare the synaptic arrangements of striate cortex projections to the dLGN, Pv, and claustrum, using anterograde tracing and electron microscopy.

View Article and Find Full Text PDF

To determine whether thalamocortical synaptic circuits differ across cortical areas, we examined the ultrastructure of geniculocortical terminals in the tree shrew striate cortex to compare directly the characteristics of these terminals with those of pulvinocortical terminals (examined previously in the temporal cortex of the same species; Chomsung et al. [] Cereb Cortex 20:997-1011). Tree shrews are considered to represent a prototype of early prosimian primates but are unique in that sublaminae of striate cortex layer IV respond preferentially to light onset (IVa) or offset (IVb).

View Article and Find Full Text PDF

Unlabelled: The primary visual cortex (V1) receives its main thalamic drive from the dorsal lateral geniculate nucleus (dLGN) through synaptic contacts terminating primarily in cortical layer IV. In contrast, the projections from the pulvinar nucleus to the cortex are less clearly defined. The pulvinar projects predominantly to layer I in V1, and layer IV in extrastriate areas.

View Article and Find Full Text PDF

The visuomotor functions of the superior colliculus depend not only on direct inputs from the retina, but also on inputs from neocortex. As mammals vary in the areal organization of neocortex, and in the organization of the number of visual and visuomotor areas, patterns of corticotectal projections vary. Primates in particular have a large number of visual areas projecting to the superior colliculus.

View Article and Find Full Text PDF

Relay neurons in dorsal thalamic nuclei can fire high-frequency bursts of action potentials that ride the crest of voltage-dependent transient (T-type) calcium currents [low-threshold spike (LTS)]. To explore potential nucleus-specific burst features, we compared the membrane properties of dorsal lateral geniculate nucleus (dLGN) and pulvinar nucleus relay neurons using in vitro whole-cell recording in juvenile and adult tree shrew (Tupaia) tissue slices. We injected current ramps of variable slope into neurons that were sufficiently hyperpolarized to de-inactivate T-type calcium channels.

View Article and Find Full Text PDF

The pulvinar nucleus of the tree shrew receives both topographic (specific) and nontopographic (diffuse) projections from superior colliculus (SC), which form distinct synaptic arrangements. We characterized the physiological properties of these synapses and describe two distinct types of excitatory postsynaptic potentials (EPSPs) that correlate with structural properties of the specific and diffuse terminals. Synapses formed by specific terminals were found to be significantly longer than those formed by diffuse terminals.

View Article and Find Full Text PDF

Visually guided movement is possible in the absence of conscious visual perception, a phenomenon referred to as "blindsight." Similarly, fearful images can elicit emotional responses in the absence of their conscious perception. Both capabilities are thought to be mediated by pathways from the retina through the superior colliculus (SC) and pulvinar nucleus.

View Article and Find Full Text PDF

We examined the synaptic organization of reciprocal connections between the temporal cortex and the dorsal (Pd) and central (Pc) subdivisions of the tree shrew pulvinar nucleus, regions innervated by the medial and lateral superior colliculus, respectively. Both Pd and Pc subdivisions project topographically to 2 separate regions of the temporal cortex; small injections of anterograde tracers placed in either Pd or Pc labeled 2 foci of terminals in the temporal cortex. Pulvinocortical pathways innervated layers I-IV, with beaded axons oriented perpendicular to the cortical surface, where they synapsed with spines that did not contain gamma amino butyric acid (GABA), likely located on the apical dendrites of pyramidal cells.

View Article and Find Full Text PDF

Two pathways from the superior colliculus (SC) to the tree shrew pulvinar nucleus have been described, one in which the axons terminate in dense (or specific) patches and one in which the axon arbors are more diffusely organized (Luppino et al. [1988] J. Comp.

View Article and Find Full Text PDF
Article Synopsis
  • The study aims to assess the safety and effectiveness of implanting neural retinal progenitor cell layers with retinal pigment epithelium in patients with severe vision loss due to retinitis pigmentosa (RP) and age-related macular degeneration (AMD).
  • In a phase II trial involving ten patients, a majority showed improvement in visual acuity, with one patient maintaining significant vision improvement over five years, despite some variability in outcomes among the group.
  • The findings support the use of retinal implants as a promising treatment option, demonstrating a 70% improvement rate in visual acuity, aligning with previous animal studies on retinal degeneration.
View Article and Find Full Text PDF

Objective: To report the subjective and objective improvement in vision in a patient with autosomal dominant retinitis pigmentosa after transplantation of a sheet of fetal neural retina together with its retinal pigment epithelium.

Design: A sheet of fetal neural retina with its retinal pigment epithelium was transplanted into the subretinal space under the fovea unilaterally in a patient with retinitis pigmentosa with visual acuity of 20/800 in the treated eye. Early Treatment Diabetic Retinopathy Study visual acuity testing, scanning laser ophthalmoscope, tissue typing of the donor and recipient, fluorescein angiography, multifocal electroretinogram, multifocal visually evoked potential, and clinical examination were used.

View Article and Find Full Text PDF

Tree shrews (Tupaia belangeri) are small diurnal mammals capable of quick and agile navigation. Electroretinographic and behavioral studies have indicated that tree shrews possess very good temporal vision, but the neuronal mechanisms underlying that temporal vision are not well understood. We used single-unit extracellular recording techniques to characterize the temporal response properties of individual retinal ganglion cell axons recorded from the optic tract.

View Article and Find Full Text PDF

Purpose: To show the safety of transplanting sheets of fetal neural retina together with its retinal pigment epithelium (RPE) to patients with retinitis pigmentosa.

Design: Interventional case series.

Methods: Sheets of fetal neural retina and RPE were transplanted together into the subretinal space near the fovea unilaterally in the eyes of five patients with retinitis pigmentosa who had only light perception in both eyes.

View Article and Find Full Text PDF